
Using a β-Contact Predictor to Guide Pairwise

Sequence Alignments for Comparative Modelling

Supplementary Material

Filippo Leddaa, Giuliano Armanoa and Andrew C.R. Martina,b

aDipartimento di Ingegneria Elettrica ed Elettronica,
University of Cagliari, Piazza d’Armi,

I-09123, Cagliari, Italy
bInstitute of Structural and Molecular Biology,

Division of Biosciences, University College London,
Darwin Building, Gower Street, London WC1E 6BT, UK

15th October, 2010

1 Defining the Cost Function in Detail

Given a pairwise sequence alignment, A, between a template and a target se-
quence (the structure of the template being known), we define the cost, c(A, Stpl),
as the sum of three contributions:

c(A, Stpl) = cnw(A) + cβi(A, Stpl) + cbc(A, Stpl) (1)

where Stpl is the structure of the template sequence.
The component cnw is the result of a classical similarity-based scoring scheme

with affine gap penalties:

cnw(A) = cgo · ngo + cgx · ngx +
∑

i,j

Mc(Ptpli
, Ptgtj

) (2)

where i and j indicate the position of the substituted residues, ngo the number
of gap openings, and ngx the number of gap extensions, all according to the
alignment A. cgo is the cost of opening of a new gap, cgx is the cost of extending
a gap, and Mc is a substitution cost matrix obtained by reversing a similarity
scoring matrix Ms (such as BLOSUM62):

Mc = −(Ms − max(Ms)) (3)

1



The second term, cβi, in Equation 1 is an additional gap penalty to penalize
gaps within the β-strands of the template:

cβi = ngβ · cgβ (4)

where cgβ is β-specific gap penalty and ngβ is the number of gaps within β-strands.
The last term in Equation 1, cbc, results from the evaluation of β-pairs in the

target sequence (assigned from the template, based on the alignment). Consider-
ing p̃(bptgt) as the estimation of the probability of the β-pair bptgt being formed, it
is reasonable that the cost c(bptgt) should be proportional to −p̃(bptgt). The value
of the cost should be large enough to allow the overall cost function to escape
from misleading minima obtained with the standard scoring system. Thus, the
cost should also be proportional to the number of residues involved in the pairing
(nbp). The following quadratic formula gave the best stable performance:

cevabs
(bptgt) =

{

(0.5 − p̃(bptgt))
2 · nbp if p̃(bptgt) ≤ 0.5,

−(0.5 − p̃(bptgt))
2 · nbp if p̃(bptgt) > 0.5.

(5)

An additional term has been included in order to stabilize the algorithm
in the presence of wrong estimations. This contribution also takes account of
the corresponding β-pair in the template (bptpl), for which the estimation error
is known to be 1 − p̃(bptpl). The requirement for this term derives from the
assumption that, with the correct alignment, the errors in the estimation of p

on the template and target are correlated. Therefore, if p̃ for the template is
significantly larger than for the target, we have a strong indicator of a probable
error in the alignment. This relative contribution is given by:

cevrel
(bptgt, bptpl) =

{

(p̃(bptpl) − p̃(bptgt))
2 · nbp if p̃(bptpl) − p̃(bptgt) > 0.1

0 otherwise.
(6)

The total cost for a single β-pair is then:

cev(bptgt, bptpl) = γabs · cevabs
(bptgt) + γrel · cevrel

(bptgt, bptpl) (7)

where γabs and γrel are given as parameters. (Note that in NOBCalign, γabs and
γrel are set to zero.) The total cost for an alignment is given by the sum of cev,
for all the β-pairs resulting from the assignment of the template structure (Stpl)
to the target (S̃tgt):

cbc(A, Stpl) =
∑

cev(bptgt, bptpl), ∀bptpl ∈ Stpl, bptgt ∈ S̃tgt (8)

2



def bc_align(template_seq, target_seq, template_str):

c_pairs=set()

for MAX_ITERATIONS times:

current_solution = bc_search(template_seq, target_seq, c_pairs)

new_c_pairs = c_pairs + get_c_pairs(current_solution, template_str)

if len(new_c_pairs) > len(c_pairs):#no new pair found

c_pairs = new_c_pairs

else:

break

return current_solution

Figure S1: The iterative algorithm pseudo-code, in Python-like syntax.

2 Minimizing the Cost Function In Detail

A search algorithm is completely defined by:

• The search problem. This is defined by the tuple:
(S0, operator-set, goal-test, f),
where S0 is the start state; operator-set defines the set of states that can
be reached from a given state; goal-test can say whether a given state is the
goal or not; f is an evaluation function which gives a score (or cost) for a
given path (sequence of states).

• The search strategy. This determines the order in which the nodes are
expanded. For instance, a best-first strategy always expands a node with
the best value of f .

With a global-search algorithm, the best alignment can be found by searching
for the path in a tree which optimizes f , leading to the end of the sequences.

Using a blind (brute-force) search strategy, many nodes are expanded unneces-
sarily before finding the solution; this may lead to an explosion in computational
cost. The number of expanded nodes is greatly reduced by adopting a heuristic
search algorithm such as A* where the path cost of a given node n is the sum of
two terms:

f(n) = g(n) + h(n) (9)

g being a path cost function, and h being a heuristic function, expected to esti-
mate the cost from that node to the solution. If the cost increases monotonically
along the path and the heuristic function is ‘admissible’ (i.e. it is an underesti-
mation of the real cost of the solution) the A* algorithm is guaranteed to find
the path with minimum cost. The complexity becomes linear if the estimation
given by the heuristic function is exact.

Using the cost function defined in Equation 1 as g(n), a heuristic function
can be devised to estimate exactly the first two terms of the cost, but an exact

3



estimate cannot be given for cbc(A, Stpl); the complexity rapidly increases with
the length of the sequences to be aligned. In order to control the run time, rather
than dynamically apply the evaluator during the search, an iterative procedure
has been used: at the i-th iteration, the pairings found in all i − 1 previous
iterations are evaluated, until a reasonable trade-off is found.

Figure S1 presents the pseudo code for the iterative procedure. The function
bc search performs a search, applying the costs for the pairs obtained for the β-
pairs encountered in the solutions of previous iterations. The iterations continue
until convergence, or until an iteration limit is reached.

The A* evaluation function has been used in the alignment search algorithm,
with the Iterative-Deepening A* (IDA*) search strategy. In our case, a search
state is indicated by S = [i, j]. i and j represent the relative position in the
sequences, and can also be viewed as coordinates in a Needleman and Wunsch-
like cost matrix. The heuristic search problem is given by:

• S0 (start state): [0, 0]

• goal-test: [i0, j0], i0 = length(P1) ∧ j0 = length(P2)

• operators: [i0, j0] → {[i0 + 1, j0 + 1], [i0 + 1, j0], [i0, j0 + 1]} (substitution,
insertion, and deletion respectively). Each operation is defined provided
that i ≤ length(P1) ∨ j ≤ length(P2).

• g (cost function): depends on the path from the start state to the current
state. It includes the costs for the substitutions and gaps along the path,
and the costs arising from β-pair evaluations. The cost function is basically
c as defined in Equation 1, but for performance reasons, the values are
rounded to the nearest integer.

• h (heuristic function): the heuristic function is the estimated cost for
the remaining part of the sequences from the current state. A matrix HP1,P2

gives the estimation: h([i, j]) = HP1,P2
(i, j) and is constructed similarly to

a Needleman and Wunsch matrix, minimizing the sum of the terms cnw and
cβi.

4



3 Results

Fold Accuracy Precision Recall MCC†

1 0.781 0.765 0.807 0.563
2 0.783 0.774 0.797 0.565
3 0.795 0.777 0.821 0.592
4 0.784 0.777 0.802 0.568
5 0.784 0.768 0.812 0.569
6 0.790 0.764 0.840 0.582
7 0.778 0.770 0.797 0.556
AVG 0.785 0.771 0.811 0.571

Table S1: Results for BCeval in a 7-fold cross validation test on the dataset
TRAINCH. †MCC = Matthews’ Correlation Coefficient.

5


