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Abstract

Background: With the exponential rise in the number
of available protein sequences, prediction of protein ter-
tiary structure has become one of the most important
tasks in bioinformatics; ‘comparative’, or ‘homology’,
modelling is able to provide accurate models, but se-
quence alignment is a critical task. A strong correla-
tion holds between the RMS deviation of models and
the occurrence of errors in the alignment.

Results: In order to correct such errors, we developed
BCAlign, based on an optimization procedure taking
into account the correctness of the assignments of
β-contacts, together with a standard scoring system.
A β-contact evaluator (BCEval), based on a mixture
of neural networks, is used to evaluate the assign-
ments. Overall, compared with Needleman and Wun-
sch pairwise alignment, BCAlign improved alignments
by 11.3% (‘fraction of correct substitutions’, FCS), on
a set of 743 alignments of domains not showing any
homology with the data used to train the evaluator.
Three-dimensional models obtained from the align-
ments with the same proteins show an average RMSD
improvement of 7.1%. On average, BCAlign results
are comparable with multiple alignments obtained with
MUSCLE (BCAlign improves FCS by 1.4%; RMSD is
worse by 2.6%), but resulted in 42% of models hav-
ing RMSD below 3Å, compared with 36% of models
generated from a Needleman and Wunsch alignment
and just 35% of models from a MUSCLE alignment.
By choosing the 20% best-scoring alignments accord-

ing to the evaluator, models obtained with BCAlign
provide a considerable improvement in the RMSD of
about 10% over MUSCLE resulting in 48% of mod-
els having RMSD below 3Å, compared with 41% from
Needleman and Wunsch and 39% from MUSCLE for
the same set.
Conclusions: The evaluation of β-contacts has proved
to be a useful measure in improving alignments for
comparative modelling. An automatic procedure,
BCAlign, which uses an iterative search strategy, has
been developed to exploit a novel scoring scheme. The
method shows significant improvements in the models
generated, particularly where it has high confidence in
the alignments generated. The method has been made
available as a web server at http://iasc.diee.unica.it/
bcserver/ with a REST-style interface also available.

Introduction
The difference between the number of protein se-
quences translated from sequences held in GenBank
[1] and the number of protein structures held by the
PDB (Protein DataBank) [2] is vast. Only recently
have high throughput methods started to be put in
place to solve protein structure. Comparative mod-
elling [3] offers a way to bridge the gap between the
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number of sequences and structures.
Comparative modelling generally relies on know-

ing the structure of a homologous protein and using
that as a template to build the structure of a pro-
tein. Methods include 3D-JIGSAW [4], FAMS [5],
ESyPred3D [6], RAPPER [7]. COMPOSER [8, 9]
and the particularly popular SwissModel [10,11] and
MODELLER [12–14].

However, the limiting factor in all these methods
is obtaining the correct alignment. This is the most
important stage of comparative modelling [15, 16],
but unfortunately, particularly at low sequence iden-
tity, it can be the most difficult to get right. The se-
quence alignment one wishes to achieve is the align-
ment that would be obtained by performing a struc-
tural alignment and reading off the resulting se-
quence alignment. Of course the structure of the
target is not available so one must rely on a se-
quence alignment. While multiple alignment can
help, the sequence alignment can often differ sub-
stantially from the structural alignment.

There are numerous methods for performing struc-
tural alignment which often differ in the precise
details of their results (e.g. CE [17], SSAP [18],
STRUCTAL [19], DALI [20], MATRAS [21], VAST
[22], SSM [23]). Since there are many different ways
to superimpose two or more protein structures, if the
proteins are not identical (or at least extremely sim-
ilar), then there can be no single optimal superpo-
sition [24]. For our purposes, we have chosen SSAP
as the gold standard, ‘correct’ alignment.

The most extreme types of misalignment (Mis-
leading Local Sequence Alignments, MLSAs) are ar-
eas where the sequence alignment for a region is very
clear, yet it does not match the structure-derived
alignment [25]. We define less extreme misalign-
ments, where the sequence and structural alignments
do not agree, as SSMAs (‘Sequence-Structure Mis-
Alignments’). For example, Figure 1 shows the se-
quence and structural alignment of a region from
1igmH00 and 1ap2A00 (a human and mouse anti-
body heavy chain variable region respectively) where
an SSMA can clearly be seen.

In their analysis of the CASP2 comparative mod-
elling section, Martin et al. [15] showed that there
was a relationship between the percentage of cor-
rectly aligned residues and the sequence identity
(Figure 2 of their paper). We have reproduced that
analysis using approximately 56,000 pairs of homol-
ogous protein domains from CATH [26, 27], each
of which was aligned on the basis of structure us-

Figure 2: The relationship between the percent-
age correct sequence alignment and the percent-
age sequence identity. Each pair of NRep domains
in each CATH homologous family has been struc-
turally aligned by SSAP and sequence aligned using
a Needleman and Wunsch global alignment. The
structural alignment is taken as the correct align-
ment. Twelve outlying points have been removed
after being identified as occurring owing to errors in
the CATH database.

ing SSAP and on sequence using a Needleman and
Wunsch sequence alignment [28]. Figure 2 clearly
shows that if there is a high sequence identity be-
tween two sequences, then the sequence alignment
is likely to match the structural alignment. How-
ever as sequence identity decreases, particularly be-
low 30%, the accuracy of the alignment decreases
and the sequence-based alignment can be completely
different from the structural alignment. In this pa-
per, we concentrate on improving the alignment in
β-sheets and therefore hope to improve the models
obtained.

Previous work by Lifson & Sander [29], Wouters
& Curmi [30], Hutchinson et al. [31] and Fooks et al.

[32] has shown clear residue pairing preferences be-
tween adjacent β-strands. With this in mind, we
believe that some sequence mis-alignments can be
detected and corrected by detecting errors in the as-
signment of β-contacts. Given a pair of β-strands (a
‘β-pair’) assigned to a target from a template after
initial sequence alignment, a measure of the likeli-
hood of the register between the paired being formed
in a real protein can be used as part of a scoring sys-
tem of an alignment algorithm. Thus we developed
BCEval, a β-contact evaluator based on a mixture
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1ap2A00 DIVMTQSPSSLTVTAGEKVTM

1igmH00 Sequence alignment EVHLLESGGNL-VQPGGSLRL

1igmH00 Structural alignment EVHLLESG-GNLVQPGGSLRL

****

Figure 1: An example of an SSMA found between CATH domains 1igmH00 and 1ap2A00. The SSMA is
indicated with asterisks.

of neural networks, able to predict whether a pair
of β-strands is in the correct register. In addition,
a pairwise sequence alignment method (BCAlign)
has been developed able to take into account the β-
contact evaluations. A search algorithm controlled
by an iterative procedure had to be adopted to find
the alignment instead of a classical dynamic pro-
gramming technique such as Needleman and Wun-
sch. This is because the score of a substitution in the
alignment will depend on the mutual register with
another substitution along the sequence (because the
register will affect the β-pairing), thus breaking the
basic assumption of dynamic programming. In other
words, while searching for the best alignment, the
contacts of the parent template are assigned to the
target; the scoring system then takes into account
both of the assigned β-strands at the same time,
so that the substitutions within a strand cannot be
scored without taking into account the information
about the neighbouring strand.

In this paper, we introduce both BCEval and
BCAlign. The accuracy of BCAlign is assessed
against (i) the standard Needleman and Wunsch
pairwise sequence alignment, (ii) multiple align-
ments obtained with MUSCLE [33] and (iii) an
equivalent of BCAlign without the use of the evalua-
tor (NoBCAlign). Additionally, the RMSD of mod-
els built using the different alignments is compared.
The method has been made available as a web server
at http://iasc.diee.unica.it/bcserver/.

Methods
When the homology modelling target and template
sequences are aligned, the structural characteristics
of the template are assigned to the target. Thus
the secondary structure and the relative position
within the structure (including interactions with
other residues) are immediately known for the tar-
get sequence. A mis-alignment will lead to a wrong
structural assignment. Thus we are able to examine
contacts between residues in adjacent β-strands in

an attempt to detect mis-alignments using an eval-
uation of an assigned β-pair being correct based on
machine learning (BCEval).

At first glance, including these evaluations in the
scoring system of a typical dynamic programming
algorithm seems straightforward. Unfortunately, the
main dynamic programming assumption (that the
optimal solution of the problems should depend on
the optimal solution of its sub-problems) is broken.
In order to overcome this limitation, we developed a
technique which adopts a heuristic search algorithm
(BCAlign).

Developing the β-Contact Evaluator (BCEval)

The evaluation of β-contacts can be tackled as a pre-
diction problem, similar to contact map prediction.
We must (i) define the training data, (ii) find a suit-
able representation of the input and output data and
(iii) set up a proper architecture and learning al-
gorithm(s). Methods were implemented using the
GAME framework [34], written in Java 6.0.

Why not use a Generic Contact Map Predictor?

Generic contact predictors such as those by Cheng
& Baldi [35] and Tegge et al. [36] have low accuracy
owing to the difficulty of predicting all possible con-
tacts occurring in a protein (including between α-
helices). Even more specific predictors, specialized
in β-contacts, report accuracies below 50% [37].

Fortunately, we already know which strands are
in contact and we can concentrate on small shifts
around a given position. Thus, we developed a new
system specialized in recognizing a contact from the
‘shifted’ versions that could be identified from an
alignment procedure.

Data Representation

The β-pairs must be represented in a fixed-length
vector to obtain an input suitable for a neural net-
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----AA-----AA------BBBB-----CCCCC-----CCCCC-------BBBB------

----12-----12------1234-----12345-----54321-------4321------

QSPVDIDTHTAKYDPSLKPLSVSYDQATSLRILNNGHAFNVEFDDSQDKAVLKGGPLDGT

CCCCEECCCCCEECCCCCCEEEECCCCCEEEEEECCCCEEEEECCCCCCCEEEECCCCCC

Figure 3: An example chain indicating the residues in contact. The letters in the first line indicate the
β-strand pairs. The numbers in the second line indicate the residues in contact within the same pair. For
example, the two residues labelled B1 form a contact.

work. The input vector must contain the residues of
the two strands involved in the pairing and shifted
versions of the same pair must be clearly recogniz-
able.

Figure 3 shows an example in which the contact-
ing residues belonging to different β-strands are in-
dicated. While the length of the β-segments is vari-
able, a fixed-length vector is needed for the data
representation. A window of N residues would be
perfectly suited to strands of length N , while infor-
mation would be lost for pairings of longer strands
and shorter strands would include residues not in-
volved in contacts.

In addition, one must account of both parallel and
anti-parallel strands. For instance, taking a win-
dow of four residues along the anti-parallel strands,
B, in Figure 3, the encoding must indicate that the
leucine at the first position in the first strand is in
contact with the glycine in the last position of the
second strand, not the valine in the first position.
The different hydrogen-bonding patterns observed
in parallel and anti-parallel sheets also result in dif-
ferent propensities in the contacts between residues,
as shown by Hutchinson et al. [31] and Fooks et al.

[32]. For these reasons, a ‘mixture of experts’ ap-
proach has been adopted: one expert only deals with
strands of one type and length.

Profiles, obtained after three iterations of a
PSI-BLAST search of the whole protein against
uniref90 1, (inclusion threshold = 10−3; defaults for
other parameters) were used to encode the residues
in the window. A simple position-independent cod-
ing of the residues gave worse performance.

The Architecture

Figure 4 shows the architecture of BCEval. The
‘core evaluation module’ of BCEval consists of a mix-
ture of 13 neural networks, each one specialized for

1http://www.ebi.ac.uk/uniref/

Figure 4: The BCEval architecture. The guarding
functions ensure that only one neural network is ac-
tivated at a time. The ‘parallel’ guard is able to
distinguish between parallel and anti-parallel strand
pairs, while the ‘length’ guard dispatches based on
the length. In the example, an anti-parallel pair of
length 3 is given so activating the path shown in
bold. Three core units consisting of independently
trained neural networks are averaged to obtain the
final evaluation.

a specific length (1,2,3,4,5,6,7+) and type (parallel
or anti-parallel) of β-pairing. The window length
includes all (and only) the residues involved in each
pairing, such that each neural network has a fixed-
length vector as input, representing the residues in-
volved in the contact. Simpler architectures with
only one neural network and fixed input length (1,
2, 3) were tried first, but gave lower accuracy. The
final output is obtained by averaging three core eval-
uation modules trained separately.

Training and Test Data Composition

A reference test set, TESTDOM, was built by select-
ing 10% of the total codes in the CATH database [26]
at the homologue level and extracting the corre-
sponding domains. A subset of the possible pairs
of homologous domains in TESTDOM, mostly dis-
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tant homologues (67% were below 30% sequence
identity), was used to build a set of domain pairs.
The resulting set, TESTALIGN, consists of 743
proteins, which have been used to test the align-
ment algorithms. In the same way, another set,
TRAINALIGN, was obtained from the domains ex-
cluded from TESTDOM in order to train the pa-
rameters of the alignment algorithms. Finally, a set
of protein chains, TRAINCH, consisting of protein
chains from a dataset with identity < 25%2, selected
in order not to include any chain containing the do-
mains in TESTDOM, was used as a starting point
to obtain contacts used in training BCEval; whole
chains were used rather than domains in order to use
DSSP [38] outputs from the EBI3 directly. Contacts
included in the training of BCEval were obtained
from TRAINCH DSSP files; these files include the
position of the contacts between paired residues in
β-strands. Negative examples (i.e. pairings not ob-
served to be in a β-contact) were obtained by a syn-
thetic sampling around the actual contacts. A Gaus-
sian distribution (µ = 0, σ =

√
5) around the pos-

itive examples was used to perform the sampling.
The negative and positive samples were balanced,
without taking into account the observed distribu-
tion. As seen in Figure 2, the extent of the observed
shifts depends greatly on the sequence identity, mak-
ing it hard to model the observed distribution cor-
rectly and, in any case, balanced inputs generally
result in better learning. This partial synthetic sam-
pling was preferred to sampling real data in order to
obtain more, and more varied, samples. In practice,
the negative data are randomly generated at each
training iteration, so improving the diversity given
to the training algorithm. All datasets are provided
in Supplementary Material.

Training Technique and Parameter Setting

Each expert is a 3-layer feed-forward neural network,
trained with a variant of back-propagation, with ini-
tial learning rate = 0.001 and momentum = 0.1. The
learning rate is adjusted between iterations with an
inverse-proportion law. The number of input neu-
rons is 20N , (where N is the size of the input win-
dow) and the number of hidden neurons is 75 for
each neural network. A single output neuron indi-
cates whether the given input is a contact or not. To

2http://bio-cluster.iis.sinica.edu.tw/∼bioapp/hyprosp2/
dataset 8297.txt

3ftp://ftp.ebi.ac.uk/pub/databases/dssp/

help the training algorithm avoid local minima, the
training set was randomly shuffled at each iteration.
Furthermore, each protein provides only a subset of
its inputs, according to a random choice performed
in accordance with a parameter, n. In particular, a
random value k is generated in the range [0, n − 1]
and the inputs with index k, k + n, k + 2n, . . . are
provided to the learning algorithm.

To prevent the training process from stopping
with a local oscillation of accuracy (evaluated on a
validation set consisting of a 10% of TRAINCH, not
used in the back-propagation process), weights are
recorded when a minimum is encountered on the val-
idation set, but the training continues until the error
on the validation set increases for 10 consecutive it-
erations.

Developing the Pairwise Sequence Alignment
(BCAlign)

The definition of an alignment algorithm includes
two separate parts: (i) the cost function i.e. a scor-
ing scheme used to evaluate an alignment; (ii) the
alignment strategy, i.e. a strategy which gives the
succession of substitutions, insertions and deletions
which minimize the cost function. Here we describe
a cost function which includes the evaluation of β-
pairings made by BCEval and an alignment strategy
suitable for use with the given cost function. Full
details of both are provided in the Supplementary
Material.

Defining the Cost Function

In brief, given a pairwise sequence alignment, A,
between a template and a target sequence (the
structure of the template being known), its cost,4

c(A,Stpl), in BCAlign consists of the sum of three
main contributions (Equation 1).

c(A,Stpl) = cnw(A)+ cβi(A,Stpl)+ cbc(A,Stpl) (1)

where Stpl is the structure of the template sequence.

The component cnw is the result of a classi-
cal similarity-based scoring scheme with affine gap
penalties. The cost of the substitutions is obtained

4Note that scores, usually preferred in the scoring systems
of sequence alignments, can also be viewed as the opposite of
costs.
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from a similarity scoring matrix Ms (e.g. BLO-
SUM62), reversed so as to obtain a cost matrix
Mc = −(Ms − max(Ms)).

The term cβi in Equation 1 is related to the total
number of gaps within the β-strands in the template.
This is similar to the approach adopted in PIMA
[39]. This component has been included in order
to increase the number of β-pairs available for the
evaluation: the larger costs help to avoid insertions
and deletions inside β-strands, which rarely occur
during evolution.

The last term in Equation 1, cbc, results from the
evaluation of β-pairs in the target sequence (assigned
from the template, based on the alignment). This
has two effects:

• to increase the cost of β-pairs that appear to be
mistakenly assigned (i.e. shifted),

• to decrease the cost of β-pairs that appear to
be assigned correctly.

The first of these changes the equilibrium of the
alignment space, moving away from the solutions
suggested by the other two terms that lead to wrong
β-pair assignments. The second, although not di-
rectly improving the alignment, prevents drifts when
correct assignments are found with the standard
scoring scheme. The change of a pair of assignments
may affect the solution in many different places
within the alignment.

cbc is composed of two elements summed over all
β-pairs:

1. A term proportional to −p̃(bptgt), where
p̃(bptgt) is the estimation of the probability of
the β-pair bptgt being formed, given by BCEval
(see Supplementary Material),

2. A term to stabilize the algorithm in the presence
of wrong estimations which also takes account of
the corresponding β-pair in the template (bptpl),
for which the estimation error is known to be
1 − p̃(bptpl). The requirement for this term de-
rives from the assumption that, with the correct
alignment, the errors in the estimation of p on
the template and target are correlated. There-
fore, if p̃ for the template is significantly larger
than for the target, we have a strong indicator
of a probable error in the alignment (see Sup-
plementary Material).

Figure 5: An example of alignment performed with a
search algorithm. The search can be represented by
a tree, in which the edge score is given by a simple
scoring system (-1 for gaps, 1 match, -2 mismatch).
Each circle represents a node, indicating the posi-
tion in the two sequences and the path score. With
a best-first search (i.e. the most promising nodes are
opened first), the nodes shown with solid lines are
expanded. In addition, nodes outside the solution
path (in dashed lines) are explored, according to the
local score. On the left, the corresponding Needle-
man and Wunsch matrix is indicated: note that the
values in the Needleman and Wunsch matrix corre-
spond to the scores of a node only when the best
path to that node is followed.

Minimizing the Cost Function

Dynamic programming is generally used to minimize
a cost function for sequence alignments and is the
best choice when the optimal solution can be built
incrementally by calculating the best solution for its
sub-problems. With the proposed cost function, this
assumption is broken, since the cost of a substitution
is related to other substitutions along the sequences.
A natural generalization of dynamic programming is
represented by a search algorithm, which allows us
to evaluate the path dynamically.

Using a global-search algorithm, the best align-
ment can be found by searching for the path in a tree
which optimizes a score or cost function, leading to
the end of the sequences. Figure 5 gives an exam-
ple of a simple alignment performed with a best-first
search strategy.

However, search algorithms may lead to an ex-
plosion in computational cost; in Figure 5, a blind
(brute-force) search strategy is adopted, with the
consequence that many nodes are expanded unnec-

6



essarily before finding the solution. The expected
number of expanded nodes grows exponentially with
the length of the path, which grows linearly with the
length of the sequences. Consequently, to reduce the
number of expanded nodes, heuristic search strate-
gies, such A* [40], can be adopted. A perfect heuris-
tic (i.e. one which provides perfect estimates) for the
components of the cost cnw and cβi (Equation 1) can
be obtained by adapting the approach used by dy-
namic programming algorithms. Hence, with only
these two components, only the nodes in the opti-
mal path are expanded by the A* algorithm, mak-
ing this equivalent to a global dynamic programming
approach. However, the component cbc in Equa-
tion 1 cannot take advantage of any heuristic cost
estimator and is relatively expensive to compute —
a search algorithm computing this component dy-
namically would be computationally too expensive.
Consequently, an iterative approach was adopted:
after each iteration (the first being run without the
component cbc), the resulting β-pairs are collected
and evaluated for use in the next iteration. The ad-
ditional information is thus introduced step-by-step,
permitting the algorithm, at each iteration, to es-
cape from misleading pairings reached by following
the other two components of the cost (cnw and cβi).
The Iterative-Deepening A* (IDA*) [41] algorithm
is used to perform the search. For further details,
see Supplementary Material.

Evaluation Criteria

Two criteria were used to evaluate the results: (i) the
fraction of correct substitutions (FCS) was measured
by comparing the sequence alignment against a refer-
ence structural alignment obtained using SSAP [18],
(ii) the RMSD of models generated from the align-
ments using MODELLER [12,14] in fully automatic
mode with default parameters5. Fitting of models
to the crystal structures was performed using the
McLachlan algorithm [42] as implemented in the pro-
gram ProFit (Martin, A.C.R., http://www.bioinf.
org.uk/software/profit/).

For each experiment, we calculated the average
RMSD of the models obtained as well as the per-
centage of ‘acceptable’ models, i.e. those with RMSD

5Only 637 models of the 743 of TESTALIGN were obtained
from the alignments owing to problems in the automatic pro-
cess which extracted the indexes for the domains from the
PDB files. The problem is often caused by fragmented do-
mains which include non-consecutive parts of sequence.

below 3Å, which is considered to be quite a strict
criterion for distant homologues. The percentage of
acceptable models is more indicative of the utility of
the alignments than is the mean since the latter can
easily be skewed by very bad models. In practical
terms there is no difference between a ‘bad’ and a
‘very bad’ model.

An additional parameter, the ‘SSMA distance’
(SSMAD), defined as the mean distance of each
residue from its correct position in the reference
structural alignment, as used in our earlier work [15]
was also tested, but was found to correlate less well
with RMSD than the simpler FCS measure.

Results
BCEval

On average over a 7-fold cross validation on
TRAINCH, BCEval achieved an accuracy of 0.785,
precision of 0.771, recall of 0.811 and Matthews Cor-
relation Coefficient of 0.571 (full results are shown
in Supplementary Material, Table S1). In order
to assess the use of BCEval in the evaluation of
alignments, the correlation between the actual per-
formance for a series of alignments and an evalu-
ation metric from BCEval for that alignment was
analyzed. This metric was the mean of the evalua-
tions for the target protein: p̃(bptgt). Needleman and
Wunsch alignments were also generated, scored with
the BLOSUM45 matrix and gap opening/extension
penalty of 13/1.

Figures 6 and 7 plot the BCEval metric against
the fraction of correct substitutions (FCS) and the
RMSD respectively. The existence of a considerable
correlation between the scores and the alignment
quality suggests that BCEval scores can be used ef-
fectively to chose the best alignment in a set and
that β-pairs can be exploited to enhance pairwise
sequence alignments.

BCAlign

Preliminary experiments were run on a subset of 500
domain pairs from TRAINALIGN to optimize pa-
rameters and the following were then used for all
runs: cgo = 22, cgx = 9 cgβ = 6, γabs = 75 and
γrel = 5 (see Supplementary Material). Substitu-
tions are scored using BLOSUM45; the algorithm is
best suited to distant homologues since, for sequence
alignments between close homologues, a standard se-
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Figure 6: Plot of the β-contact predictor (BCEval)
score vs. the ‘fraction of correct substitutions’ (FCS).
Where BCEval scores zero, no β-pairs were assigned
after the alignment because no contacts were present
or because all were broken by gaps in the alignment.
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Figure 7: Plot of the β-contact (BCEval) score vs.

RMSD (Å) for three-dimensional comparative mod-
els generated using MODELLER.

quence alignment is usually sufficiently reliable, and
very few SSMAs are detected. The maximum num-
ber of iterations was set to 5 with a limit of one
minute imposed on the search algorithm at each it-
eration using an Intel SU9600 CPU. The main code
was written in Java and experiments were scripted
using Python via the Jython 2.5 interpreter.

The performance of BCAlign was assessed in three
comparisons: (i) with a Needleman and Wunsch
alignment (scored using the BLOSUM45 matrix and
gap opening/extension penalties 13/1, optimized as
above), (ii) with multiple alignments obtained using
MUSCLE [33], and (iii) with the same search tech-
nique, but without the use of the evaluator (‘NoB-
CAlign’) i.e. using optimized parameters as above,
but setting γabs = 0 and γrel = 0. MUSCLE was run
using standard parameters, including all the CATH
homologous sequences contained in TESTDOM in
the multiple alignments.

On the TESTALIGN dataset, BCAlign shows a
relative improvement6 of 11.3% (0.628vs. 0.703) in
FCS compared with Needleman and Wunsch, 1.4%
compared with MUSCLE and 6.2% compared with
NoBCAlign. The RMSD improves by 7.14% (5.99Å
vs. 6.43Å) compared with Needleman and Wunsch,
and by 6.59% compared with NoBCAlign. How-
ever BCAlign performs slightly worse than MUSCLE
(−2.6%) when assessed on RMSD, but see below.
The large values of RMSD result from the fact that
the majority of the alignments in the test set have
sequence identity below 25%. In addition, as seen in
Figure 7, a few models have extremely large RMSDs,
skewing the mean value.

The percentage of acceptable models (i.e. with
RMSD < 3.0Å) is probably a more useful measure of
the success of an alignment method. In this exper-
iment, this was 42% for BCAlign, 36% for Needle-
man and Wunsch, 35% for MUSCLE and 39% for
NoBCAlign. Unexpectedly, multiple alignment us-
ing MUSCLE performed worst in this evaluation.

Better results are obtained by restricting compar-
isons to data for which we expect BCAlign to per-
form well, i.e. where a large number of β-pairings are
present and the BCEval score improves. For struc-
tures with at least 8 β-pairs (58% of the alignments)
the RMSD improvement is 1.22% over MUSCLE and
8.83% over NoBCAlign. The percentage of accept-
able models improves to 48% for BCAlign, compared

6Relative improvements are calculated with RI(a, b) =
a−b

(a+b)/2
· 100
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Figure 8: Average improvement in FCS and RMSD
compared with MUSCLE at different inclusion
thresholds. The threshold consists of the difference
in the BCEval score between alignments obtained
with BCAlign and MUSCLE. At each point in the
plot, the alignments below the given threshold are
included. The percentage of included alignments at
each threshold is also shown.

with 41% for Needleman and Wunsch, 39% for MUS-
CLE and 44% for NoBCAlign, evaluating the same
set of models.

In addition, the BCEval scores can be used to se-
lect those cases where BCEval makes confident pre-
dictions. Figures 8 and 9 show the average relative
improvement in RMSD and FCS between BCAlign
pairwise alignment and MUSCLE multiple align-
ment, when varying an inclusion threshold based on
the improvement in the assignment of β-pairs when
comparing MUSCLE and BCAlign alignments, as
evaluated using BCEval. The graphs clearly show
that, by using an inclusion threshold of less than
−0.3 (thus including up to 20% of alignments), sub-
stantial improvements in FCS and RMSD can be ob-
tained compared with other methods. For example,
taking alignments with at least 8 β-pairings and an
inclusion threshold of −0.3 (Figure 9), the percent-
age of proteins with RMSD lower than 3Å is 39% for
BCAlign, 21% for Needleman and Wunsch, 15% for
MUSCLE and 26% for NoBCAlign.

Conclusions
Sequence alignment is the most critical task in com-
parative modelling: a strong correlation holds be-
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Figure 9: Average improvement in FCS and RMSD
compared with MUSCLE at different inclusion
thresholds, for proteins containing at least 8 β-pairs.
The threshold consists of the difference in the BCE-
val score between alignments obtained with BCAlign
and MUSCLE. At each point in the plot, the align-
ments below the given threshold are included. The
percentage of included alignments at each threshold
is also reported.

tween the RMS deviation of models and the occur-
rence of errors in the alignment. In order to im-
prove alignments, we have exploited the likelihood
of a given pairing between β-strands being correct.
Since the location of β-strands is known for the tem-
plate it can be assigned to the target sequence after
the alignment. Our β-contact evaluator, BCEval,
estimates the likelihood of assigned β-pairings oc-
curring in real proteins by using a mixture of neural
networks.

BCEval has then been exploited in a novel se-
quence alignment technique, BCAlign. We have pre-
sented a scoring system which combines a normal
system based on a substitution matrix with BCE-
val. Since it is not possible to use standard dynamic
programming with this scoring system, BCAlign re-
sorts to a search algorithm, guided by an external
loop to control the maximum run time.

Experiments confirm the validity of the approach:
BCEval predictions show a considerable correlation
with correct β-pair assignments and alignments ob-
tained with BCAlign show that the evaluation of as-
signed β-pairs can be successfully exploited to en-
hance sequence alignments.

Overall, BCAlign showed a considerable improve-
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ment compared with conventional pairwise Needle-
man and Wunsch alignment of 11.3% in FCS on a set
of 743 alignments of domains not showing homology
with the data used to train the evaluator. Three-
dimensional models obtained from the alignments
show an average RMSD improvement of 7.14% com-
pared with standard Needleman and Wunsch se-
quence alignments. In addition, BCEval results are,
on average, comparable with multiple alignments ob-
tained with MUSCLE. However, Figures 8 and 9
show that choosing the 20% best-scoring alignments
according to the evaluator, models obtained with
BCAlign show a considerable improvement in the
RMSD of about 10% over MUSCLE. The percent-
age of acceptable models shows an improvement of
about 22% over MUSCLE when all proteins are con-
sidered and about 23% when only proteins contain-
ing at least 8 β-pairs are considered.

In conclusion, BCAlign appears to perform best
when used in a mixed environment, in which dif-
ferent techniques compete while taking into account
the scores assigned by BCEval. Restricting the use
of BCAlign to those cases where BCEval makes the
most confident predictions greatly increases its effec-
tiveness. Even including the best 50% of the align-
ments shows BCAlign to be a good strategy (5%
improvement over MUSCLE).

Finally, the implementation of the algorithms can
probably be further improved. The computation is
still not sufficiently efficient, frequently reaching the
time limit for long sequences which, on average, will
have more β-strands that can be exploited by the
method and therefore are likely to show the best
improvements. The search algorithm could be im-
proved, particularly by enhancing the heuristic func-
tion to decrease the alternative paths that are ex-
plored. Alternatively, it may be possible to design
a better control loop able to include the evaluations
without overloading the search algorithm, or to use
stochastic local search algorithms, including genetic
algorithms.
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14. Fiser A, Do RK, Šali A: Modeling of loops in protein
structures. Protein Sci. 2000, 9:1753–1773.

10



15. Martin ACR, MacArthur MW, Thornton JM: Assess-
ment of comparative modeling in CASP2. Proteins:
Struct., Funct., Genet. 1997, Suppl. 1:14–28.

16. Cristobal S, Zemla A, Fischer D, Rychlewski L, Elofs-
son A: A Study of Quality Measures for Protein
Threading Models. Bioinformatics 2001, 2:5–5.

17. Shindyalov IN, Bourne PE: Protein Structure Align-
ment by Incremental Combinatorial Extension
(CE) of the Optimal path. Protein Eng. 1998, 11:739–
747.

18. Taylor WR, Orengo CA: Protein Structure Align-
ment. J. Mol. Biol. 1989, 208:1–22.

19. Subbiah S, Laurents DV, Levitt M: Structural Simi-
larity of DNA-binding Domains of Bacteriophage
Repressors and the Globin core. Curr. Biol. 1993,
3:141–148.

20. Holm L, Sander C: Protein Structure Comparison
by Alignment of Distance Matrices. J. Mol. Biol.
1993, 233:123–138.

21. Kawabata T: MATRAS: A Program for Protein 3D
Structure Comparison. Nuc. Ac. Res. 2003, 31:3367–
3369.

22. Gibrat JF, Madej T, Bryant SH: Surprising Similar-
ities in Structure Comparison. Curr. Opin. Struct.
Biol. 1996, 266:540–553.

23. Krissinel E, Henrick K: Secondary-structure Match-
ing (SSM), a new tool for fast Protein Structure
Alignment in Three Dimensions. Acta Crystallogr.
2004, 60:2256–2268.

24. Novotny M, Madsen D, Kleywegt GJ: Evaluation of
Protein fold Comparison Servers. Proteins: Struct.,
Funct., Genet. 2004, 54:260–270.

25. Saqi MAS, Russell RB, Sternberg MJE: Misleading lo-
cal sequence alignments: implications for compar-
ative modelling. Protein Eng. 1998, 11:627–630.

26. Orengo CA, Michie AD, Jones S, Jones DT, Swindells
MB, Thornton JM: CATH–a Hierarchic Classifica-
tion of Protein Domain Structures. Structure 1997,
5:1093–1108.

27. Pearl F, Todd A, Sillitoe I, Dibley M, Redfern O, Lewis
T, Bennett C, Marsden R, Grant A, Lee D, Akpor A,
Maibaum M, Harrison A, Dallman T, Reeves G, Diboun
I, Addou S, Lise S, Johnston C, Sillero A, Thornton J,
Orengo C: The CATH Domain Structure Database
and Related Resources Gene3D and DHS Pro-
vide Comprehensive Domain Family Information
for Genome Analysis. Nuc. Ac. Res. 2005, 33:D247–
D251.

28. Needleman SB, Wunsch CD: A general method ap-
plicable to the search for similarities in the amino
acid sequence of two proteins. J. Mol. Biol. 1970,
48:443–453.

29. Lifson S, Sander C: Specific Recognition in the Ter-
tiary Structure of Beta-sheets of Proteins. J. Mol.
Biol. 1980, 139:627–639.

30. Wouters MA, Curmi PM: An Analysis of side Chain
Interactions and pair Correlations Within An-
tiparallel Beta-sheets: the Differences Between
Backbone Hydrogen-bonded and Non-hydrogen-
bonded Residue Pairs. Proteins 1995, 22:119–131.

31. Hutchinson EG, Sessions RB, Thornton JM, Woolf-
son DN: Determinants of Strand Register in An-
tiparallel Beta-sheets of Proteins. Protein Sci 1998,
7:2287–2300.

32. Fooks HM, Martin ACR, Woolfson DN, Sessions RB,
Hutchinson EG: Amino acid Pairing Preferences in
Parallel Beta-sheets in Proteins. J. Mol. Biol. 2006,
356:32–44.

33. Edgar RC: MUSCLE: a Multiple Sequence Align-
ment Method with Reduced time and Space Com-
plexity. BMC Bioinformatics 2004, 5:113–113.

34. Ledda F, Milanesi L, Vargiu E: GAME: A Generic Ar-
chitecture based on Multiple Experts for Predict-
ing Protein Structures. International Journal Com-
munications of SIWN 2008, 3:107–112.

35. Cheng J, Baldi P: Improved Residue Contact Pre-
diction Using Support Vector Machines and a
Large Feature set. BMC Bioinformatics 2007, 8:113–
113.

36. Tegge AN, Wang Z, Eickholt J, Cheng J: NNcon: Im-
proved Protein Contact map Prediction Using
2D-recursive Neural Networks. Nucleic Acids Res
2009, 37:W515–W518.

37. Lippi M, Frasconi P: Prediction of protein -
residue contacts by Markov logic networks with
grounding-specific weights. Bioinformatics 2009,
25(18):2326–2333, [http://bioinformatics.oxfordjournals.
org/content/25/18/2326.abstract].

38. Kabsch W, Sander C: Dictionary of Protein Sec-
ondary Structure: Pattern Recognition of
Hydrogen-bonded and Geometrical Features.
Biopolymers 1983, 22:2577–2637.

39. Smith RF, Smith TF: Pattern-induced multi-
sequence alignment (PIMA) algorithm employing
secondary structure-dependent gap penalties for
use in comparative protein modelling. Protein Eng.
1992, 5:35–41.

40. Hart PE, Nilsson NJ, Raphael B: A Formal Basis for
the Heuristic Determination of Minimum Cost
Paths. Systems Science and Cybernetics, IEEE Trans-
actions on 1968, 4(2):100 –107.

41. Korf R: Depth-First iterative-deepening: An op-
timal admissible tree search. Artificial Intelligence
1985, 27:97–109.

42. McLachlan A: Rapid Comparison of Protein Struc-
tres. Acta Cryst 1982, A38:871–873.

11


