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ABSTRACT

Motivation: High-throughput sequencing platforms are increasingly

used to screen patients with genetic disease for pathogenic

mutations, but prediction of the effects of mutations remains

challenging. Previously we developed SAAPdap (Single Amino

Acid Polymorphism Data Analysis Pipeline) and SAAPpred (Single

Amino Acid Polymorphism Predictor) that use a combination of

rule-based structural measures to predict the effect of missense

genetic variants on protein function. Here we investigate whether

the same methodology can be used to develop a differential

phenotype predictor able to distinguish between the two major

clinical phenotypes (hypertrophic cardiomyopathy, HCM, and dilated

cardiomyopathy, DCM) associated with mutations in the beta-myosin

heavy chain (MYH7) gene product (Myosin-7).

Results: A random forest predictor trained on rule-based structural

analyses together with structural clustering data gave a Matthews’

correlation coefficient (MCC) of 0.53 (accuracy, 75%). A post hoc

removal of machine learning models that performed particularly badly,

increased the performance (MCC=0.61, Acc=79%). This suggests

that methods used for pathogenicity prediction can be extended for

use in differential phenotype prediction.

Contact: andrew@bioinf.org.uk –or– andrew.martin@ucl.ac.uk

Supplementary Information: Supplementary File 1; Supplementary

File 2.

1 INTRODUCTION

Mutations in proteins generally result in loss of function, but in

some cases can lead to a gain of function. Generally this is not

gain of a novel function, but an increased activity, often through

loss of some type of control mechanism. In general predictors of

pathogenicity do not try to distinguish between loss-of-function and

gain-of-function mutations, but simply predict whether or not there

will be some effect on function leading to a pathogenic state.

In some cases however, the situation is more complex, with

mutations in a single protein leading to a number of distinct

∗to whom correspondence should be addressed

phenotypes. For example, inherited heart muscle diseases, or

cardiomyopathies, which are a major cause of sudden cardiac death

in the young and an important cause of heart failure at all ages

(Hughes and McKenna, 2005) are, as a group, very heterogeneous in

genotype and phenotype. Radically different phenotypes can result

from mutations in the same gene (Arad et al., 2002).

The widespread application of Single Nucleotide Polymorphism

(SNP) chips and high-throughput sequencing has generated an

urgent need for informatics tools that can help predict the effects

of the many sequence variants that these platforms identify. More

than 20 groups have devised methods to predict whether a given

mutation will have a deleterious effect (Yue et al., 2006; Uzun

et al., 2007; Yip et al., 2004; Dantzer et al., 2005; Karchin et al.,

2005; Stitziel et al., 2004; Reumers et al., 2005; Bao et al., 2005;

Reva et al., 2011; Schwarz et al., 2010; Bromberg and Rost, 2007;

Bromberg et al., 2008; González-Pérez and López-Bigas, 2011;

Shihab et al., 2013; Al-Numair and Martin, 2013; Li et al., 2009;

Kircher et al., 2014; Calabrese et al., 2009; Worth et al., 2011; Yates

et al., 2014), the best known methods being SIFT (Ng and Henikoff,

2003), an evolutionary method which calculates a sophisticated

residue conservation score from multiple alignment, and PolyPhen-

2 (Adzhubei et al., 2010, 2013), which uses machine learning on a

set of eight sequence- and three structure-based features. A more

complete list of methods is provided on our web site at http:

//www.bioinf.org.uk/saap/methods/. However, these

tools are generally not validated for individual diseases where

most available datasets are too small to train machine-learning

methods and tend to be heavily unbalanced. An additional problem

is that it is often very difficult to obtain reliable validated data

on neutral mutations. One of the few cases where a predictor has

been produced for an individual class of proteins is the work on

voltage-gated potassium channels by Stead et al. (2011).

Attempting to distinguish between mutations in a single

protein that result in different pathogenic phenotypes is a

difficult problem that, unlike pathogenicity prediction, has not

been widely addressed. There have been a small number of

attempts to distinguish loss-of-function and gain-of-function

mutations at a molecular level, but (as stated above) typically

c© Oxford University Press 2014. 1
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Fig. 1. Annotated regions of the Myosin-7 sequence. Regions for which structures are known are indicated, together with the number of known mutations

from Table 2 in each 100 amino acids of the sequence. The percentage of the total 235 mutations that map to known structure in each region is

indicated: two of the mutations (at positions 82 and 838) do not correspond to any annotated regions. Myosin N-terminal Pfam annotation, residues 34–75;

Myosin head (motor domain) Pfam and InterPro annotation, residues 85–778; IQ motif UniProtKB/SwissProt and InterPro annotation, residues 781–810,

SMART annotation, residues 780-802; Coiled coil region UniProtKB/SwissProt annotation, residues 839–1935, SMART annotation, residues 841-1927;

Nucleotide binding (ATP) region UniProtKB/SwissProt annotation, residues 178–185; Actin-binding region UniProtKB/SwissProt annotation, residues

655–677; Actin-binding region UniProtKB/SwissProt annotation, residues 757–771; Myosin tail Pfam and InterPro annotation, residues 1068–1926.

gain-of-function mutations result from loss of regulation

making the protein constitutively active. For example,

mutations that cause the VAB-1 tyrosine kinase to become

constitutively active cause severe axon defects (Mohamed and

Chin-Sang, 2006). Some of the challenges in the ‘Comparative

Assessment of Genome Interpretation’ (CAGI) experiment have

required the prediction of the level of enzyme activity (e.g.

genomeinterpretation.org/content/4-NAGLU)

and some have been related to familial

combined hyperlipidemia or channelopathies

(genomeinterpretation.org/content/FCH,

genomeinterpretation.org/content/scn5a), but, to

our knowledge, there have been no clear cases where predictions

have focused on mutations in the same protein resulting in

different phenotypes other than through loss of function vs. loss of

regulation.

Initially our own focus was on trying to understand the effects

that mutations have on protein structure and then to use this

information to compare the effects of non-pathogenic mutations

and pathogenic deviations (Hurst et al., 2009). Our approach has

been to map mutations onto protein structure and to perform a rule-

based analysis of the likely structural effects of these mutations

in order to ‘explain’ the known functional effect (if any) of the

mutation. Since we map mutations to structure, we only consider

mutations in proteins for which a structure has been solved. With the

recent growth in the amount of mutation data, we have moved from

updating a database of analysis of mutations, to providing a server

(SAAPdap — Single Amino Acid Polymorphism Data Analysis

Pipeline) for analysis of the effects of mutations (http://

www.bioinf.org.uk/saap/dap/) (Al-Numair and Martin,

2013). We have also developed SAAPpred (Single Amino Acid

Polymorphism Predictor) which takes the results of the structural

analysis and uses a Random Forest machine-learning method to

predict whether mutations are pathogenic (Al-Numair and Martin,

2013). SAAPpred is restricted to analyzing mutations in proteins

for which a native structure is available, but appears to outperform

methods such as SIFT (Ng and Henikoff, 2003), PolyPhen-2

(Adzhubei et al., 2010, 2013) and FATHMM (Shihab et al., 2013).

SAAPdap uses a combination of rule-based structural measures

to assess whether a mutation is likely to alter the local structural

environment. SAAPpred exploits this information to predict

whether the function of a protein will be affected and, in turn, lead to

disease. The approach has been used to study structural differences

between disease-causing mutations and neutral polymorphisms

(Hurst et al., 2009; Al-Numair and Martin, 2013), and to analyse

mutations in glucose-6-phosphate dehydrogenase (Kwok et al.,

2002) and in the tumour suppressor P53 (Martin et al., 2002).

In this paper we investigate whether the approach that we

developed for SAAPdap and SAAPpred can be used for differential

phenotype prediction specifically for mutations in the beta-

myosin heavy chain (Myosin-7, UniProtKB/SwissProt accession

P12883, http://www.uniprot.org/uniprot/P12883),

encoded by the MYH7 gene (OMIM *160760), and leading to

hypertrophic cardiomyopathy (HCM, OMIM #192600) or dilated

cardiomyopathy (DCM, OMIM #613426).

Myosin-7 is part of the force-generating molecular motor of the

sarcomere and parts of the structure have been solved. It is divided

into three main domains: a globular ‘head’, which includes the

ATP-binding site and the actin-binding site; the ‘neck’ which is

composed of an α-helical domain to which the myosin light chains

bind and which is further subdivided into a converter region and

a lever arm involved in the amplification of mechanical energy;

and the ‘tail’ or ‘rod’ region. Together with MYBPC3 (the gene

encoding myosin binding protein C), mutations in MYH7 are the

major cause of HCM as well as being a cause of DCM and left

ventricular non-compaction (LVNC) (Haas et al., 2014). In contrast
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to MYBPC3, where most pathogenic variants cause mRNA and

protein truncation, the large majority of MYH7 variants are missense

(Carrier et al., 1997; Richard et al., 2003) which often makes

prediction of pathogenicity problematic (Walsh et al., 2010; Kumar

et al., 2013).

2 MATERIALS AND METHODS

2.1 Dataset of variants

A dataset of MYH7 variants was built from a) disease-causing or

likely-pathogenic variants for which phenotypic data are available

in the Human Genome Mutation Database (HGMD) (Stenson et al.,

2002); b) variants found in a curated dataset extracted from the

literature and used for commercial gene testing reports (Health in

Code SL); and c) variants detected in a cohort of consecutively

evaluated unrelated HCM/DCM patients at UCLH. Genetic analysis

was approved by the UCLH review board (IRB) and informed

written consent was obtained from all subjects (Lopes et al., 2013).

Although there are no co-segregation data or functional studies that

can ‘prove’ the causality of mutations, selected variants from all

three datasets were rare as defined by a minor allele frequency

(MAF) < 0.5% in the ESP6500 NIH Heart, Lung and Blood

Institute (NHLBI) exome sequencing project database (Pan et al.,

2012; Andreasen et al., 2013). This dataset is larger and more

comprehensive than the data available from other sources and

contains approximately twice the number of Myosin-7 mutations

available in Swissvar/Humsavar. The complete dataset has been

provided as Supplementary File 1. Proprietary data from HGMD,

where the mutations are not available in other datasets, have been

indicated solely by their HGMD accession code.

2.2 SAAPdap structural analysis and SAAPpred

Our previous software, SAAPdap (Al-Numair and Martin, 2013)

performs a set of 14 structural analyses (using software written in

Perl and C), plus the calculation of solvent accessibility (Lee and

Richards, 1971). SAAPdap provides cutoffs for each of the analyses

to suggest whether these are likely to be damaging (Al-Numair and

Martin, 2013; Hurst et al., 2009). To predict pathogenicity, a total of

47 features are derived from these analyses (Table 1) and are used as

input to SAAPpred, a machine learning method that uses Random

Forests to predict whether a mutation is pathogenic (Al-Numair and

Martin, 2013). In this paper, the same methodology is used but,

rather than using a dataset of pathogenic and phenotypically silent

mutations, a dataset of HCM and DCM mutations in Myosin-7 is

used.

2.3 Features and machine learning for differential

phenotype prediction

In addition to the 47 features used in SAAPpred, three other features

were derived that represent distances from structural cluster centres.

These were identified by clustering the coordinates of HCM and

DCM mutations using single linkage clustering and finding the

number of clusters that gave the most significant separation of HCM

and DCM mutations between the clusters (χ2 test). See Section 3.3.

Subsets (listed in the legend to Table 7) of the 50 features were

then used to train Random Forest predictors implemented in WEKA

version 3.6.7 (Witten et al., 2011) using the default classification

threshold to separate mutations associated with HCM and DCM.

3 RESULTS

3.1 MYH7 mutation data analysis and prediction of

pathogenicity

MYH7 mutations associated with various cardiomyopathy

phenotypes are shown in Table 2. Note that it is not possible

to know whether variants are truly pathogenic; rather we treat

mutations associated with an HCM or DCM cardiomyopathy

phenotype in the above-mentioned databases, or in the literature,

as actual positives. A total of 403 mutations were identified in the

MYH7 gene. More than two-thirds of them have previously been

published in the literature as being associated with disease and the

others are novel variants.

Since we map mutations to protein structure and therefore require

a structure to be solved of the protein of interest, we are not able

to analyse all mutations. Of the 396 unique mutations (i.e. distinct

mutations, different from one another at the protein level) in MYH7,

166 (41.9%) did not map to structure and therefore could not be

analysed (see Table 2). This situation should improve as further

structures become available. 385 of the 396 unique mutations had a

recorded phenotype and of these 230 mapped to at least one Protein

DataBank (PDB) chain. Table 3 lists three PDB structures which

were identified for human Myosin-7. Two other PDB files (IDs 1ik2

and 3dtp) were eliminated since one was a 3D homology model and

the other was a human-chicken fusion protein. Most mutations were

associated with HCM (n = 298), whereas all other phenotypes

were associated with fewer than 50 mutations each, including

DCM with the next highest number of mutations (n = 46). The

majority of mutations in both HCM and DCM were unique (292

and 46 respectively, see Table 2). Since mutations related to these

phenotypes were the most abundant, further analyses were restricted

to HCM and DCM, grouping the remaining phenotypes as ‘other’.

The distribution of the variants amongst the structural

and functionally-annotated domains of the beta-myosin

heavy chain protein was analysed. Figure 1 shows the

regions for which structures are known and the distribution

of observed mutations together with the domains of the

Myosin-7 sequence as annotated by UniProtKB/SwissProt

(UniProt Consortium, 2014) (http://www.uniprot.org/

uniprot/P12883#section_features), Pfam (Finn et al.,

2014) (http://pfam.xfam.org/protein/P12883),

SMART (Letunic et al., 2012) (http://smart.embl.

de/smart/show_motifs.pl?ID=P12883),

and InterPro (Hunter et al., 2012) (http:

//www.ebi.ac.uk/interpro/protein/P12883). All

of the 235 unique variants that mapped to structure were located

in the myosin globular ‘head’ domain or the ‘neck’ region with

no mutations seen in the ‘tail’ or ‘IQ motif’ regions. 99.1% of

mutations were in annotated domains or regions, while just two

mutations (0.9%, at positions 82 and 838) were in un-annotated

parts of the sequence.

The individual structural effects for the 230 unique mutations

which mapped to structure and for which a phenotype was also

recorded (see Table 2) were analyzed using SAAPdap. 175 variants

(76.1%) were classified as likely to be damaging by one or more
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Analysis Features Type

Binding Is the residue involved in binding (defined by presence of specific contacts with another protein chain or

ligand)?

Boolean

Interface Is the residue in an interface (defined by change in solvent accessibility between complexed and

uncomplexed forms)?

Boolean

SProtFT Is the residue annotated with a functionally relevant SwissProt feature? Boolean

Which of 12 SwissProt features appear? (ACT SITE, BINDING, CA BIND, DNA BIND, NP BIND,

METAL, MOD RES, CARBOHYD, MOTIF, LIPID, DISULFID, CROSSLNK)?

12 x Boolean

RelAccess Relative solvent accessibility of the residue Percentage

ImPACT ImPACT conservation score for the residue if it is found to be significantly conserved Real

HBond If the native residue was involved in a hydrogen bond, the difference in hydrogen bonding pseudo-energy Real

SurfacePhobic The difference in hydrophobicity if the residue is on the surface and the hydrophobicity has increased Real

CorePhilic The difference in hydrophobicity if the residue is buried and the hydrophobicity has decreased Real

BuriedCharge The difference in charge if the residue is buried Integer

SSGeom Was the native residue involved in a disulphide bond? Boolean

Void The difference in size of the largest void Real

The sizes of the 10 largest voids in the native protein 10 x Real

The sizes of the 10 largest voids in the mutant protein 10 x Real

Clash The sum of the van der Waals and torsional energy for the minimum perturbation protocol modelled

sidechain replacement

Real

Glycine If the native residue was a glycine, the Ramachandran pseudo-energy difference of the mutation Real

Proline If the mutant residue was a proline, the Ramachandran pseudo-energy difference of the mutation Real

CisPro Was the native residue a cis-proline? Boolean

Table 1. The 47 features used in SAAPpred machine learning derived from the 14 structural analyses in SAAPdap.

Disease Total∗ Unique† Mutations

(Phenotype) mutations mutations mapped to PDB

HCM 298 292 188

DCM 46 46 21

RCM 1 1 1

LVNC 17 17 1

LVNC/ASD 1 1 1

DCM/Endocardial Fibroelastosis 1 1 1

DCM/LVNC 3 3 2

HCM/LVNC 1 1 1

HCM/DCM/LVNC 2 2 2

HCM/DCM 3 3 3

HCM/RCM/DCM 2 2 2

Laing distal myopathy 4 4 2

Ebstein 5 5 1

Cardiomyopathy and distal myopathy 3 3 2

Myosin storage myopathy 3 3 1

Hyaline body myopathy 1 1 1

No recorded phenotype 11 11 5

Total 403 396 235

Table 2. Numbers of MYH7 mutations for each phenotype. Abbreviations: PDB, Protein DataBank; DCM, Dilated Cardiomyopathy; HCM, Hypertrophic

Cardiomyopathy; RCM, Restrictive Cardiomyopathy; LVNC, Left Ventricular Non-compaction; ASD, Atrial Septal Defect. The mutations for which there

was no recorded phenotype were excluded from structural analysis, meaning that only 230 mutations which mapped to PDB structures could be analysed.

For the novel differential phenotype predictor, only the 209 unique HCM and DCM mutations that mapped to PDB structures were used. ∗Total mutations

represents the total count of amino acid mutations. Sometimes the same mutation may be observed multiple times because the DNA level mutation is different

or because of redundancy between different data sources. †Unique mutations represents the number of non-redundant mutations at the protein level.
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PDB ID Resolution Description Residues

2fxm 2.7Å Structure of the human beta-myosin S2 fragment A: 838–961 B: 850–961

2fxo 2.5Å Structure of the human beta-myosin S2 fragment A: 838–963 B: 838–961

C: 838–962 D: 838–963

4db1 2.6Å Cardiac human myosin S1DC, beta isoform complexed

with Mn-AMPPNP

A: 2-777 B: 2-775

Table 3. PDB structures for UniProtKB/SwissProt accession code P12883. PDB files may be accessed at http://www.pdb.org/ or viewed using

PDBSum (http://www.ebi.ac.uk/thornton-srv/databases/pdbsum/). Note that PDB file 2fxo contains a mutation Glu924Lys.

SAAPdap Structural Analysis Number of mutations

No PDB structure available 166

No individual significant structural effect 55

At least one significant structural effect 175

• HBond 42

• BuriedCharge 31

• SProtFT 2

• Interface 48

• Clash 14

• Proline 2

• ImPACT 138

• Binding 20

• Void 0

• SurfacePhobic 15

• Glycine 8

• CisPro 1

• CorePhilic 26

• SSGeom 0

Table 4. SAAPdap Structural Analysis for the 230 unique Myosin-7

mutations with a recorded phenotype which mapped to structure (see

Table 2).

individual SAAPdap analyses while, for 55 variants, no significant

individual structural effect was detected (see Table 4). The most

frequent features affected were: mutation of a highly conserved

residue (ImPACT) occurring in 138 variants; mutation of an

interface amino acid occurring in 48 variants; and disruption of

hydrogen-bonds occurring in 42 variants. Other significant mutation

effects occurred less frequently, with no observed mutations causing

voids.

The output from SAAPdap for the 230 unique mutations that

mapped to structure was then fed into SAAPpred (Al-Numair

and Martin, 2013) and 92.7% were predicted as pathogenic (i.e.

Sn=0.927). This compares with 69.51% predicted to be pathogenic

using SIFT and 90% predicted to be pathogenic using PolyPhen-

2. Other metrics such as specificity (Sp), accuracy (Acc), the

F1-score and the Matthews’ Correlation Coefficient (MCC) could

not be calculated since no set of validated non-pathogenic single

amino acid mutations is available — even in the ESP 5K and 1000

Genomes data there are very few missense variants in MYH7 with

a frequency > 5% that could comfortably be classified as benign.

Fig. 2. MYH7 (HCM/DCM) dataset selection for machine learning.

A unique mutation level filtering is used, where the same mutation

(UniProtKB/SwissProt:Native:Number:Mutant) does not occur in training

and testing sets. This was achieved using a ‘manual’ (non-WEKA) cross-

validation that splits the dataset into N sets, each one in turn was chosen as

the testing set and the remaining N − 1 were used for training.

3.2 A machine-learning approach for MYH7

differential phenotype prediction

All mutations associated with multiple phenotypes, or causing

phenotypes other than HCM or DCM were discarded leaving the

188 unique HCM and 21 unique DCM mutations which map to

structure.

Using the results of the SAAPdap structural analysis described

above, of the 47 ‘features’ used to describe the mutations, 14

were found to be redundant (i.e. they had the same value for all

examples in the dataset: the 13 UniProtKB/SwissProt features and

the disulphide (SSGeom) analysis), thus reducing the number of

features to 33. Although a single structure was used with SAAPpred,

because of the limited size of the available dataset for differential

phenotype prediction, it was desirable to exploit multiple structures

to enrich the dataset. PDB files 4db1 and 2fxm contain two copies

of the protein while 2fxo contains four copies (Table 3). These

data were then used to train Random Forest models in WEKA.

The use of multiple structures for each mutation meant that cross-

validation could not be performed within WEKA since it is possible

that WEKA could select the same mutation (in a different structure)

to be in both training and testing sets.

To address the cross-validation problem and to deal with the

severe imbalance of the dataset (there being many more HCM

mutations than DCM), Perl code was written to limit the size of each

class by selecting examples at random and to divide the 188 HCM

and 21 DCM unique mutations with available PDB structures into

sets of approximately the same size. For example, if the data were

split into 21 sets, each of these 21 sets in turn (each containing one

DCM mutation) was chosen as a test set and the remaining 20 sets
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Number of

folds / models T mtry Acc MCC

10 1000 10 0.6229 0.2463

10 1000 15 0.6750 0.3590

10 1000 20 0.7000 0.4103

10 1000 25 0.6916 0.3851

10 50 20 0.6833 0.3681

10 100 20 0.6916 0.3872

10 500 20 0.6937 0.4023

10 1000 20 0.7000 0.4103

10 2000 20 0.6812 0.3686

10 5000 20 0.7000 0.4005

Table 5. Exploring the number of features and number of trees in HCM vs.

DCM prediction. T is the number of trees; mtry is the number of randomly

chosen attributes in every split. Initially mtry was explored using T =

1000 and an optimum value of 20 was identified (shown in bold). T was

then explored retaining the optimum value of 1000. Performance measures:

accuracy (Acc) and Matthews’ correlation coefficient (MCC). All scores are

averaged over 10-folds of ‘manual’ (non-WEKA) cross-validation.

Number Percentage of

of clusters Significance Expecteds < 5

2 p < 0.4384 0

3 p < 0.0003755 16.7%

4 p < 0.001256 37.5%

5 p < 0.002577 50%

6 p < 0.005057 50%

7 p < 0.01013 50%

8 p < 0.01778 56.25%

9 p < 0.03044 55.56%

10 p < 0.03116 60%

Table 6. Significance calculated from χ2 tests on the ability of 3D clustering

to separate HCM from DCM mutations. The highest significance result is

shown in bold. For the p-value to be reliable, there must be no more than

20% of expected counts less than five. Consequently the p-values for ≥ 4

clusters will be over-estimated.

(each containing the remaining 20 DCMs) were used for training.

In each case, the data sets were enlarged with all the available PDB

chain structures and balanced datasets were generated by retaining

all the DCM mutations and randomly drawing the same number

of mutations from the HCM dataset (see Figure 2). The random

draws from the HCM dataset were taken 10 times over to provide

a representative sample of the HCM class and the results from the

trained predictors were averaged.

The parameter space described by the number of features used

in each tree decision point (mtry) and the number of trees (T ) was

explored and, as shown in Table 5, the best results were obtained

using 1000 trees with 20 features (accuracy of 70% and MCC=0.41).

3.3 Structural clustering of mutations

Anecdotal evidence suggested that HCM- and DCM-associated

mutations tend to be distributed differently across the Myosin-7

Fig. 3. Clustering Myosin-7 mutations in the N-terminal region using PDB

file 4db1. For the three clusters, HCM mutations are shown in 1: red, 2:

green and 3: blue, while DCM mutations are shown in 1: orange, 2: yellow

and 3: cyan. DCM mutations are over-represented in cluster 3 (cyan); when

they appear in clusters 1 and 2, (orange and yellow) they are mostly buried.

structure. This observation was exploited in an attempt to improve

the results.

PDB file 2fxm, which represents the C-terminal region, contains

only two DCM mutations compared with 35 HCM, indicating that

DCM mutations are very rare in this domain. For the N-terminal

domain (PDB file 4db1), the Cα positions of the mutated residues

were clustered using single linkage hierarchical clustering. For each

of 2 . . . 10 clusters, a χ2 test was performed to see how well

the clustering separated HCM from DCM mutations, as shown in

Table 6. Apart from two clusters, these are all clearly significant

at the p < 0.05 level. However, as the number of clusters gets

larger, one needs to take care with the significance levels, because

no more than 20% of expected values should be < 5 and none < 1

(significance will be over-estimated if either of these is true). For

≥ 4 clusters, the first of these fails and for ≥ 6 clusters the second

also fails. However, between three and six clusters the significance

is so good, that (while it will be over-estimated for 4–6 clusters) it

is clearly still better than p < 0.05 with 3 clusters giving the most

significant result and passing both of the validity criteria even if a

Bonferroni correction is made for multiple testing. Consequently

we clearly have clusters of residues in the N-terminal region that

are over/under populated with DCM and HCM mutations compared

with what is expected.

Figure 3 illustrates the three clusters in the N-terminal domain

contained in PDB file 4db1. Cluster members are listed in

Supplementary File 2. In particular, DCM is highly over-represented

in the third (blue/cyan) cluster. DCM mutations in clusters 1 and 2

(orange and yellow) are hardly visible and therefore mostly buried.

On the other hand, the DCM mutations in cluster 3 (cyan) are largely

on the surface.

As a control, to ensure that the significance of the clustering was

not a random effect, we also permuted the labels randomly for the

three clusters 1000 times over and calculated the average random p-

value (p = 0.5133, σn−1 = 0.2859) from a χ2 test. This is clearly

not significant and compares with the true labels which gave a p <

0.0003755. This p-value is 1.794 standard deviations away from the

mean on the distribution of random p-values which is significant at

the p < 0.05 level.
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To use this information in machine learning, the centroid of each

cluster was calculated and the feature vector for each mutation was

expanded by the addition of the distances from the C-alpha of the

mutated residue to each of the three centroids. Mutations that were

in the C-terminal domain (and mapped to PDB files 2fxm and 2fxo

rather than 4db1) were given distances of 100.0Å, 100.0Å, 100.0Å

from the three clusters.

3.4 Optimizing the machine learning

As described above, initial training to explore the number of trees

and features was performed using 10 machine-learning models

(equivalent to cross-validation folds, each with a random selection

of the HCM data) with the prediction results averaged across the 10.

Using a larger number of models allows more of the HCM data to be

exploited in each model while maintaining balanced datasets. Using

21 machine-learning models, only one unique DCM mutation can

be held back from training for test purposes.

After determining the optimum number of features and trees,

the most informative features were explored together with different

numbers of machine-learning models (5, 11 and 21 models). Odd

numbers were used to allow a jury vote in predictions. Addition

of the ‘clustering’ feature described above was also explored. The

different feature sets are described in detail together with summary

results in Table 7. In brief, the feature subsets were as follows: ‘All’

the full standard set of 33 informative features (47 from SAAPdap,

but with the 14 redundant features, which were identical for all

mutations, removed); ‘Top 5 voids’ uses only the top five largest

voids (before and after mutation) instead of the standard 10; ‘Delta

voids’ uses differences between void sizes in native and mutant

structures rather than absolute values; ‘Set1’ was a selection of the

five features found to be most discriminatory using χ2 tests on each

of the features; ‘Set2’ and ‘Set3’ were sets of features randomly

generated within WEKA, ‘Set2’ being based on the ‘All’ dataset

and ‘Set3’ being based on the ‘Delta voids’ set.

Initially, the number of machine-learning models was tested using

the full feature set (‘All’), plus those feature sets that reduced the

amount of void data (‘Top 5 voids’ and ‘Delta voids’), with and

without the clustering features. Having established that 11 models

was the most effective, the reduced feature sets were explored using

a smaller value of mtry owing to the much reduced number of

features.

As shown in Table 7, the best performance was obtained using 11

machine-learning models with ‘Set2’ plus the clustering features.

Cross-validation with 11 models used 19 of the 21 DCMs in each

training set with 2 held back for testing. This gave an accuracy of

75% and MCC=0.531. By removing two machine-learning models

that performed particularly badly and did not predict any DCM

mutations (whether correct or incorrect), this increased to an

accuracy of 79% and MCC=0.61. It appears that these particularly

bad machine-learning models have failed to learn the characteristics

of DCM mutations. To apply the method to novel mutations, we

would remove these two bad machine-learning models and use the

remaining nine to make predictions.

3.5 Control Experiments

To ensure that the performance of the predictor does not come only

from the structural clustering, we also tested the performance of

using the structural clusters alone. Using the 2–10 structural clusters

described above, each cluster was assigned as a DCM or HCM

cluster based on that phenotype having a higher observed/expected

ratio in that cluster. An additional cluster was created to represent

the mutations that map to the C-terminal domain (PDB code

2fxm) which has a very small number of DCM mutations. Each

mutation was then predicted as DCM or HCM based on its cluster

membership. Performance was then calculated for each level of

clustering with best performance being achieved with three clusters

(plus the C-terminal domain cluster): MCC=0.33, ACC=0.89,

SnHCM=0.95, SnDCM=0.33. For a real prediction problem, cluster

membership would need to be assigned based on the distance to the

closest cluster centre (average linkage) or closest cluster member

(single linkage). Clearly this performance is considerably worse

than our full predictor as judged by MCC (full predictor MCC=0.53,

or MCC=0.61 with the worst machine-learning models removed).

This is also a good example to illustrate the well-known

problem in machine learning that accuracy is a poor indicator of

performance with unbalanced datasets (the cluster-only prediction

gives ACC=0.89 while the full predictor gives ACC=0.75, or

ACC=0.79 with the worst models machine-learning removed).

However, simply predicting everything as HCM would give

ACC=0.90 and, by definition, SnHCM=1.00 and SnDCM=0.00,

while the MCC would be a much better indicator of overall

performance giving a value of MCC=0.12 (adding 1 to TP,FP,TN,FN

— treating HCM as positive and DCM as negative — since

TN=FN=0 results in a divide-by-zero error).

As a control on the overall prediction, the testing was repeated

using two of the test sets, but the labels were randomly shuffled

five times over. As expected, the prediction performance was

essentially random with an MCC=−0.123 for the first test set and

MCC=−0.115 for the second test set.

4 DISCUSSION

It is logical to assume that the functional consequences of mutations

in the same gene depend on the specific domain or region where

the variant is localized (Woo et al., 2003), but the hypothesis that

the structural impact of a missense variant influences differential

pathogenic phenotype or outcome has not previously been tested.

In practice, a novel mutation would be tested for predicted

pathogenicity before an HCM/DCM prediction was performed. We

confirmed that the SAAPpred approach performs well in identifying

pathogenic mutations in MYH7 and went on to test a machine-

learning method that discriminated between pathogenic variants

associated with an HCM or DCM phenotype (accuracy of 75% and

MCC=0.531). This was achieved by averaging 11 machine-learning

models using feature Set2 (Binding, RelAccess, SurfacePhobic,

CorePhilic, Voids, MutantLargestVoid1, NativeLargestVoid1,

Clash, Proline, CisPro and Clustering) and using 1000 trees with

5 features. These results are surprisingly good considering the

limited size of the dataset used in training. Indeed the results are

as good as the overall performance of some methods used for

general pathogenicity prediction — for example, our assessment

(Al-Numair and Martin, 2013) of MutationAssessor showed an

overall accuracy of 69.8% and MCC=0.453, while SIFT showed

an overall accuracy of 76.3% and MCC=0.528. Clearly these results

are comparable with what we are able to achieve for HCM/DCM

differential phenotype prediction which is a more difficult problem
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Number

of folds Features

/ models used T mtry SnHCM SnDCM F1 Acc MCC

5 All 1000 20 0.572 0.611 0.576 0.576 0.152

5 All + Clustering 1000 20 0.755 0.481 0.679 0.648 0.311

5 Top 5 voids + Clustering 1000 20 0.735 0.611 0.688 0.681 0.368

5 10 delta void + Clustering 1000 20 0.785 0.407 0.676 0.608 0.205

11 All 1000 20 0.705 0.648 0.673 0.682 0.429

11 All + Clustering 1000 20 0.739 0.463 0.662 0.608 0.220

11 Top 5 voids + Clustering 1000 20 0.830 0.481 0.741 0.699 0.427

11 10 delta voids + Clustering 1000 20 0.830 0.519 0.730 0.676 0.521

21 All 1000 20 0.619 0.648 0.585 0.631 0.357

21 All + Clustering 1000 20 0.746 0.463 0.684 0.623 0.293

21 Top 5 voids + Clustering 1000 20 0.690 0.463 0.610 0.627 0.374

21 10 delta voids + Clustering 1000 20 0.619 0.426 0.584 0.560 0.133

11 Set1 + Clustering 1000 5 0.659 0.593 0.603 0.625 0.314

11 Set2 + Clustering 1000 5 0.795 0.574 0.737 0.750 0.531

11 Set3 + Clustering 1000 5 0.852 0.519 0.746 0.699 0.520

Table 7. Summary results of machine learning performance using different features of HCM/DCM dataset and using different numbers of folds of cross-

validation. The best performing predictor is shown in bold. (T : the number of trees; mtry : the number of randomly chosen attributes in every split; SnHCM :

Sensitivity for HCM mutations; SnDCM : Sensitivity for DCM mutations; F1: The F1-score; Acc: Accuracy; MCC: Matthews’ Correlation Coefficient)

• ‘All’: BuriedCharge, Binding, CorePhilic, CisPro, Clash, Glycine, HBond, ImPACT, Interface, MutantLargestVoid1. . . MutantLargestVoid10,

NativeLargestVoid1. . . NativeLargestVoid10, Proline, RelAccess, SurfacePhobic, Void.

• ‘Top 5 voids’: BuriedCharge, Binding, CorePhilic, CisPro, Clash, Glycine, HBond, ImPACT, Interface, MutantLargestVoid1. . . MutantLargestVoid5,

NativeLargestVoid1. . . NativeLargestVoid5, Proline, RelAccess, SurfacePhobic, Void.

• ‘Delta Voids’: BuriedCharge, Binding, CorePhilic, CisPro, Clash, Glycine, HBond, ImPACT, Interface, DeltaLargestVoid1. . . DeltaLargestVoid10, Proline,

RelAccess, SurfacePhobic, Void.

• ‘Set1’: Uses the most informative features based on χ2 tests: Binding, RelAccess, ImPACT and Glycine.

• ‘Set2’: A WEKA randomly selected dataset: Binding, RelAccess, SurfacePhobic, CorePhilic, TotalVoidVolume, MutantLargestVoid, NativeLargestVoid,

Clash, Proline, CisPro.

• ‘Set3’: A WEKA randomly selected dataset based on the ‘Delta Voids’ set: Binding, Interface, RelAccess, ImPACT, Hbond, BuriedCharge, DeltaVoidTotal,

DeltaVoidLargest1. . . DeltaVoidLargest5, Clash, Glycine.

owing to the small imbalanced dataset. By removing two machine-

learning models that performed particularly badly, the performance

was increased to an accuracy of 79% and MCC=0.61.

Because the SAAPdap structural analysis relies on having a

crystal structure of the protein in question, our predictions are

limited to mutations in regions of the protein for which a structure

has been solved. Consequently, we are only able to look at 188

of 292 unique mutations leading to HCM and 21 of 46 mutations

leading to DCM. If structures become available for more of the

protein, then this situation will improve. However, for mutations that

are present in disordered regions of structure, different methods of

prediction will be required. It is also possible that the performance

of the method may be further improved by taking into account

missing parts of the structure. However, since all the structural

parameters included in the prediction are the results of local

interactions, this is unlikely to have a significant effect.

Our analysis of the structural distribution of HCM- and DCM-

associated mutations showed that there was a highly statistically

significant difference in the locations of these mutations. Referring

to Figure 3, DCM is highly over-represented in the blue/cyan cluster

and largely on the surface, while DCM mutations present in the

remaining clusters are mostly buried. The functional consequences

of this distribution warrant further in vitro studies.

4.1 Conclusions and future directions

Missense single nucleotide variants in MYH7 lead to a dominant

negative effect in which the mutated protein is not degraded

but rather integrates into the sarcomere, leading to the disease

phenotype. The various effects of individual variants on fibre

contractile velocity, force and calcium sensitivity have been

proposed as an explanation for the existence of dramatically

different phenotypes arising from genetic variation in the same

molecule. A paradigm has been proposed whereby mutations that

increase motor activity and power output lead to HCM, while those

that diminish motor function and decrease power output lead to

DCM (Spudich, 2014).

This work confirms the hypothesis that structural data can be

used with machine learning to create a differential phenotype

predictor, in this case able to distinguish between HCM and DCM

mutations in MYH7. The performance exceeds that of the well-

known SIFT program in the problem of predicting pathogenic vs.

neutral mutations. Differential phenotype prediction has all the
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challenges of pathogenicity prediction with the added complications

of having a small unbalanced dataset. This work provides the basis

for differential phenotype prediction and with further work could be

used to guide clinical genetic testing strategies and further clinical

investigations.
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