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Abstract

High-throughput sequencing platforms are increasingly used to screen pa-
tients with genetic disease for pathogenic mutations, but prediction of the effects
of mutations on protein structure and phenotype remains challenging. Previ-
ously we developed SAAPdap (Single Amino Acid Polymorphism Data Analysis
Pipeline) and SAAPpred (Single Amino Acid Polymorphism Predictor) that use a
combination of rule-based structural measures to predict the effect of missense
generic variants on protein function. Here we determine the ability of SAAPpred
to predict the pathogenicity of single missense mutations in the beta-myosin
heavy chain (MYH7) gene product (Myosin-7) and extend the system to predict
the major associated clinical phenotypes. Final prediction results had an accu-
racy of 92.7% for all MYH7 mutations considered together, 99.1% for dilated
cardiomyopathy (DCM) mutations and 91.4% for hypertrophic cardiomyopathy
(HCM) mutations. The novel predictor using multiple random forest models to
distinguish between HCM and DCM mutations using SAAPdap analysis had a
best performance accuracy of 75% and a post hoc removal of models that per-
formed particularly badly, raised the accuracy of 79%. These results suggest
that SAAPdap analysis improves on existing tools used to predict pathogenicity
of MYH7 mutations in clinical practice. If confirmed in independent analyses,
this approach to phenotype prediction has the potential significantly to improve
diagnostic genetic testing.
Keywords: cardiomyopathy; MYH7; Myosin-7; genetics; machine learning; pro-
tein structure.

1 Introduction

Inherited heart muscle diseases or cardiomyopathies are a major cause of sudden
cardiac death in the young and an important cause of heart failure at all ages1.
As a group, they are very heterogeneous in genotype and phenotype and radically
different phenotypes can result from mutations in the same gene2.
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The widespread application of SNP chips and high-throughput sequencing has
generated an urgent need for informatics tools that can predict the effects of the
many sequence variants that these platforms identify. More than a dozen groups
have devised methods to predict whether a given mutation will have a deleterious
effect3–16, the best known methods being SIFT17 (an evolutionary method which
calculates a sophisticated residue conservation score from multiple alignment) and
PolyPhen-218,19, which uses machine learning on a set of eight sequence- and three
structure-based features.

However, these tools are not designed for specific diseases and frequently give
conflicting results. In addition, most available datasets for individual diseases are
too small to train machine-learning methods and tend to be heavily unbalanced, it
being particularly difficult to obtain reliable data on neutral mutations. As described
previously20, another major limitation of most existing prediction software is that it
makes limited use of structural information.

Initially our own focus was on trying to understand the effects that mutations
have on protein structure and then to use this information to compare the effects
of non-pathogenic mutations and pathogenic deviations21. Our approach has been
to map mutations onto protein structure and to perform a rule-based analysis of
the likely structural effects of these mutations in order to ‘explain’ the known func-
tional effect (if any) of the mutation. Since we map mutations to structure, we
only consider mutations in proteins for which a structure has been solved. With the
recent growth in the amount of mutation data, we have moved from updating a
database of analysis of mutations, to providing a server (SAAPdap — Single Amino
Acid Polymorphism Data Analysis Pipeline) for analysis of the effects of mutations
(http://www.bioinf.org.uk/saap/dap/)20 and have developed SAAPpred
(Single Amino Acid Polymorphism Predictor) which takes the results of the struc-
tural analysis and uses a random forest machine learning method to predict whether
mutations are pathogenic20. SAAPpred is restricted to analyzing mutations in pro-
teins for which a native structure is available, but appears to outperform methods
such as SIFT17, PolyPhen-218,19 and FATHMM16.

SAAPdap and SAAPpred use a combination of rule-based structural measures to
assess whether a mutation is likely to alter the local structural environment and use
this information to predict whether the function of a protein will be affected and,
in turn, lead to disease. The approach has been used to study structural differences
between disease-causing mutations and neutral polymorphisms20,21, and to analyse
mutations in glucose-6-phosphate dehydrogenase22 and in the tumour suppressor
P5323.

The beta-myosin heavy chain (Myosin-7, UniProtKB/SwissProt accession
P12883, http://www.uniprot.org/uniprot/P12883), encoded by the
MYH7 gene, is part of the force-generating molecular motor of the sarcomere and
much of the structure has been solved. Together with MYBPC3 (the gene encoding
myosin binding protein C), mutations in MYH7 are the major cause of hypertrophic
cardiomyopathy (HCM) as well as a cause of dilated cardiomyopathy (DCM) and
left ventricular non-compaction24. In contrast to MYBPC3, where most pathogenic
variants cause mRNA and protein truncation, the large majority of MYH7 variants
are missense25,26 which often makes prediction of pathogenicity problematic27,28.

Here, the performance of SAAPpred on missense mutations in MYH7, leading to
changes in the Myosin-7 protein, is tested to determine their potential as a predic-
tive tool in patients with cardiomyopathy. Further, the possibility of using the same
approach (together with an additional set of features describing structural clus-
tering) to investigate genotype/phenotype relationships at a more detailed level is
investigated by attempting to distinguish mutations that cause HCM from those that
cause DCM.
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2 Materials and Methods

2.1 Dataset of variants

A dataset of MYH7 variants detected in a cohort of consecutively evaluated un-
related HCM patients was selected for study. All selected variants were rare as
defined by a minor allele frequency (MAF) < 0.5% in the NIH Heart, Lung and
Blood Institute (NHLBI) exome sequencing project database29,30. Genetic analysis
was approved by the UCLH review board (IRB) and informed written consent was
obtained from all subjects31. To increase the number of variants analysed, the data
were enriched with other established disease-causing or likely-pathogenic variants
in MYH7, for which phenotypic data are available in the Human Genome Mutation
Database (HGMD)32 or in a curated dataset of MYH7 variants extracted from the
literature and used for commercial gene testing reports (Health in Code SL).

2.2 Prediction of in silico pathogenicity

Prediction of mutation pathogenicity was performed using PolyPhen-2, SIFT, and
SAAPpred20. SAAPpred exploits SAAPdap which analyses a set of 14 structural
features (Interface: residue is in an interface according to difference in solvent ac-
cessibility between complexed and uncomplexed forms; Binding: residue makes
specific interactions with a different protein chain or ligand; SProtFT: residue is
annotated as functionally relevant by UniProtKB/SwissProt; Clash: mutation intro-
duces a steric clash with an existing residue; Void: mutation introduces a desta-
bilizing void in the protein core; CisPro: mutation from cis-proline, introducing
an unfavourable ω torsion angle; Glycine: mutation from glycine, introducing un-
favourable torsion angles; Proline: mutation to proline, introducing unfavourable
torsion angles; HBond: mutation disrupts a hydrogen bond; CorePhilic: introduc-
tion of a hydrophilic residue in the protein core; SurfacePhobic: introduction of a
hydrophobic residue on the protein surface; BuriedCharge: mutation causes an un-
satisfied charge in the protein core; SSGeom: mutation disrupts a disulphide bond;
ImPACT: residue is significantly conserved). From these analyses, together with
relative accessibility (RelAccess), 47 features are derived (using software written
in Perl and C) and used in SAAPpred to predict pathogenicity using Random Forests
implemented in WEKA33, trained as described in Al-Numair et al.20.

The SAAPdap analysis indicates local structural effects and suggests those mu-
tations for which one or more individual analyses are likely to be damaging by
themselves. The SAAPpred predictor makes use of these analyses to make a predic-
tion of pathogenicity; thus a mutation with no analyses individually expected to be
damaging can still be predicted to be pathogenic as a result of the accumulation of
a number of more subtle effects.

The same approach was used in separating mutations associated with HCM and
DCM. However, three additional features were used that represent distances from
cluster centres identified by clustering the coordinates of HCM and DCM mutations
using single linkage clustering and finding the number of clusters that gave the most
significant separation of HCM and DCM mutations between the clusters (χ2 test).

3 Results

3.1 MYH7 mutation data analysis

MYH7 mutations associated with various cardiomyopathy phenotypes are shown in
Table 1. Note that it is not possible to know whether variants are truly pathogenic;
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Disease Total Unique Mutations
(Phenotype) mutations mutations mapped to PDB
HCM 298 292 188
DCM 46 46 21
RCM 1 1 1
LVNC 17 17 1
LVNC/ASD 1 1 1
DCM/Endocardial Fibroelastosis 1 1 1
DCM/LVNC 3 3 2
HCM/LVNC 1 1 1
HCM/DCM/LVNC 2 2 2
HCM/DCM 3 3 3
HCM/RCM/DCM 2 2 2
Laing distal myopathy 4 4 2
Ebstein 5 5 1
Cardiomyopathy and distal myopathy 3 3 2
Myosin storage myopathy 3 3 1
Hyaline body myopathy 1 1 1
No recorded phenotype 11 11 5
Total 403 396 235

Table 1: Numbers of MYH7 mutations for each phenotype. Abbreviations: PDB,
Protein DataBank; DCM, Dilated Cardiomyopathy; HCM, Hypertrophic Cardiomy-
opathy; RCM, Restrictive Cardiomyopathy; LVNC, Left Ventricular Non-compaction;
ASD, Atrial Septal Defect. The mutations for which there was no recorded pheno-
type were excluded from structural analysis, meaning that 230 mutations which
mapped to PDB structures were analysed.

PDB ID Description Residues
2fxm Structure of the human beta-

myosin S2 fragment
A: 838–961 B: 850–961

2fxo Structure of the human beta-
myosin S2 fragment

A: 838–963 B: 838–961
C: 838–962 D: 838–963

4db1 Cardiac human myosin S1DC,
beta isoform complexed with Mn-
AMPPNP

A: 2-777 B: 2-775

Table 2: PDB structures for UniProtKB/SwissProt accession code P12883. PDB files
may be accessed at http://www.pdb.org/. Note that PDB file 2fxo contains a
mutation Glu924Lys.
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Figure 1: Annotated regions of the Myosin-7 sequence. Regions for which struc-
tures are known are indicated, together with the number of known mutations from
Table 1 in each 100 amino acids of the sequence. The percentage of the total
235 mutations in each region is indicated: two of the mutations (at positions
82 and 838) do not correspond to any annotated regions. Myosin N-terminal
Pfam annotation, residues 34–75; Myosin head (motor domain) Pfam and
InterPro annotation, residues 85–778; IQ motif UniProtKB/SwissProt and
InterPro annotation, residues 781–810, SMART annotation, residues 780-
802; Coiled coil region UniProtKB/SwissProt annotation, residues 839–1935,
SMART annotation, residues 841-1927; Nucleotide binding (ATP) region UniPro-
tKB/SwissProt annotation, residues 178–185; Actin-binding region UniPro-
tKB/SwissProt annotation, residues 655–677; Actin-binding region UniPro-
tKB/SwissProt annotation, residues 757–771; Myosin tail Pfam and InterPro an-
notation, residues 1068–1926.

rather we treat mutations associated with an HCM or DCM cardiomyopathy pheno-
type in the above-mentioned databases, or in the literature, as actual positives. A
total of 403 mutations were identified in the MYH7 gene. More than two-thirds of
them have previously been published in the literature as being associated with dis-
ease and the others are novel variants. Of the total mutations for which a phenotype
was recorded, 385 were unique and 230 mapped to at least one Protein DataBank
(PDB) chain. Table 2 lists three PDB structures which were identified for human
Myosin-7. Two other PDB files (IDs 1ik2 and 3dtp) were eliminated since one was
a model and the other was a human-chicken fusion protein. Most mutations were
associated with HCM (n = 298), whereas all other phenotypes were associated with
fewer than 50 mutations each, including DCM with the next highest number of mu-
tations (n = 46). The majority of mutations in both HCM and DCM were unique
(292 and 46 respectively). Since mutations related to these phenotypes were the
most abundant, further analyses were conducted, looking specifically at HCM and
DCM and grouping the remaining phenotypes as ‘other’.

The distribution of the variants amongst the structural and
functionally-annotated domains of the beta-myosin heavy chain
protein were analysed. Figure 1 shows the domains of the
Myosin-7 sequence as annotated by UniProtKB/SwissProt34 (http:
//www.uniprot.org/uniprot/P12883#section_features),
Pfam35 (http://pfam.xfam.org/protein/P12883), SMART36

(http://smart.embl.de/smart/show_motifs.pl?ID=P12883), and
InterPro37 (http://www.ebi.ac.uk/interpro/protein/P12883), the
regions for which structures are known and the distribution of observed mutations.
All of the 235 unique variants were located in the myosin globular ‘head’ domain
or the ‘neck’ region with no mutations seen in the ‘Myosin tail’ region or the ‘IQ
motif’ region. 99.1% of mutations were in annotated domains or regions, while
just two mutations (0.9%) (at positions 82 and 838) were in un-annotated parts of
the sequence.
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SAAPdap Structural Analysis Number of mutations
No PDB structure available 166
No individual significant structural effect 55
At least one significant structural effect 175

• HBond 42
• BuriedCharge 31
• SProtFT 2
• Interface 48
• Clash 14
• Proline 2
• ImPACT 138
• Binding 20
• Void 0
• SurfacePhobic 15
• Glycine 8
• CisPro 1
• CorePhilic 26
• SSGeom 0

Table 3: SAAPdap Structural Analysis for the 230 unique Myosin-7 mutations with
a recorded phenotype which mapped to structure (see Table 1).

Since we map mutations to protein structure and therefore require a structure
to be solved of the protein of interest, we are not able to analyse all mutations.
Of the 396 distinct mutations in MYH7, 166 (41.9%) did not map to structure and
therefore could not be analysed. This situation should improve as further crystal
structures become available.

The 230 unique mutations for which a phenotype was recorded and which
mapped to structure (see Table 1) were analysed using the SIFT and PolyPhen-2
prediction software. Of these, 69.51% were predicted to be pathogenic using SIFT
and 90% were predicted to be pathogenic using PolyPhen-2. Since all mutations
are associated with HCM and DCM, this corresponds to accuracies of 69.51% and
90% respectively.

Analysing the data with SAAPdap shows that a total of 175 variants were clas-
sified as likely to be damaging by at least one individual SAAPdap analysis. For
55 variants, no significant individual structural effect was detected by SAAPdap
analysis and, as explained above, 166 could not be analysed by SAAPdap because
they did not map to a PDB structure (see Table 3). The most frequent features
affected were: mutation of a highly conserved residue (ImPACT) occurring in 138
variants; mutation of an interface amino acid (Interface) occurring in 48 of the
variants; disruption of H-bonds occurring in 42 of the variants. Other significant
mutation effects occurred less frequently, with no observed mutations causing voids
or disrupting disulphide bonds.

3.2 Pathogenicity prediction

Pathogenicity prediction was performed using the SAAPpred predictor trained on
HumVar as described by Al-Numair et al.20. Ten pre-built models were used and
the performance results were averaged. Since all mutations in the dataset were
associated with HCM and DCM, true negatives (TN) and false positives (FP) could
not be calculated and consequently, the Matthews’ Correlation Coefficient (MCC)
could not be calculated. Table 4 shows a summary of results. Overall accuracy for
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One PDB Multi PDB
Sn F1 Acc Sn F1 Acc

HCM 0.914 0.955 0.914 0.795 0.883 0.795
DCM 0.991 0.995 0.991 0.789 0.878 0.789
Other 0.967 0.983 0.967 0.797 0.884 0.797
All 0.927 0.962 0.927 0.794 0.882 0.794

Table 4: Sensitivity (Sn), F1-measure and Accuracy (Acc) for the pathogenicity
prediction for the distinct mutations that could be analysed using SAAPdap and
SAAPpred. Note that there were no negative examples in the dataset and conse-
quently, Sn and accuracy values are identical.

Figure 2: MYH7 (HCM/DCM) dataset selection for machine learning. A
unique mutation level filtering is used, where the same mutation (UniPro-
tKB/SwissProt:Native:Number:Mutant) does not occur in training and testing sets.
This was achieved using a ‘manual’ (non-WEKA) cross-validation that splits the
dataset into N sets, each one in turn was chosen as the testing set and the re-
maining N − 1 were used for training.

all phenotypes (HCM/DCM/Other) was 92.7% when using a single best-resolution
PDB chain, but was reduced to 79.4% when using all PDB chains. In this instance,
it is clearly important only to use the best resolution chain for each mutation rather
than using data from multiple chains. Thus SAAPpred (accuracy = 92.7%) shows
a clear performance improvement over the results shown earlier for SIFT (accuracy
= 69.51%) and PolyPhen-2 (accuracy = 90%).

3.3 A machine learning approach to predict MYH7 phenotype

All mutations associated with multiple phenotypes, or causing phenotypes other
than HCM or DCM (i.e. Restrictive Cardiomyopathy (RCM), Left Ventricular Non-
compaction (LVNC), Atrial Septal Defect (ASD), Ebstein’s anomaly, distal skeletal
myopathies, etc.), were discarded leaving the 188 unique HCM and 21 unique DCM
mutations which map to structure.

Of the 47 ‘features’ from the SAAPdap structural analysis used to describe the
mutations, 14 were found to be redundant (i.e. they had the same value for all
examples in the dataset: the 13 UniProtKB/SwissProt features and the disulphide
(SSGeom) analysis), thus reducing the number to 33 features. Although in the
pathogenicity prediction, using a single structure was more effective than using
multiple structures, because of the limited size of the available dataset for pheno-
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Number
of folds T mtry Acc MCC
10 1000 10 0.6229 0.2463
10 1000 15 0.6750 0.3590
10 1000 20 0.7000 0.4103
10 1000 25 0.6916 0.3851

10 50 20 0.6833 0.3681
10 100 20 0.6916 0.3872
10 500 20 0.6937 0.4023
10 1000 20 0.7000 0.4103
10 2000 20 0.6812 0.3686
10 5000 20 0.7000 0.4005

Table 5: Exploring the number of features and number of trees in HCM vs. DCM pre-
diction. T is the number of trees; mtry is the number of randomly chosen attributes
in every split. Initially mtry was explored using T = 1000 and an optimum value
of 20 was identified (shown in bold). T was then explored retaining the optimum
value of 1000. Performance measures: accuracy (Acc) and Matthew’s correlation
coefficient (MCC). All scores are averaged over 10-folds of ‘manual’ (non-WEKA)
cross-validation.

type prediction, it was desirable to exploit multiple structures to enrich the dataset.
These data were then used to train Random Forest models in WEKA. The use of
multiple structures for each mutation meant that cross-validation could not be per-
formed within WEKA since it is possible that WEKA could select the same mutation
(in a different structure) to be in both training and testing sets.

To address the cross-validation problem and to deal with the severe imbalance
of the dataset (there being many more HCM mutations than DCM), Perl code was
written to limit the size of each class by selecting examples at random and to divide
the 188 HCM and 21 DCM unique mutations with available PDB structures into
sets of approximately the same size. For example, if the data were split into 21
sets, each of these 21 sets in turn (each containing one DCM mutation) was chosen
as a test set and the remaining 20 sets were used for training. In each case, the
data sets were enlarged with all the available PDB chain structures and balanced
datasets were generated by retaining all the DCM mutations and randomly drawing
the same number of mutations from the HCM dataset (see Figure 2). The random
draws from the HCM dataset were taken 10 times over to provide a representative
sample of the HCM class and the results from the trained predictors were averaged.

The parameter space described by the number of features used in each tree
decision point (mtry) and the number of trees (T ) was explored and, as shown in
Table 5, the best results were obtained using 1000 trees with 20 features (accuracy
of 70% and MCC=0.41).

3.4 Clustering mutations

Anecdotal evidence suggested that HCM and DCM associated mutations tend to
be distributed differently across the Myosin-7 structure. This observation was ex-
ploited in an attempt to improve the results,

PDB file 2fxm, which represents the C-terminal region, contains only two DCM
mutations compared with 35 HCM, indicating that DCM mutations are very rare in
this domain. For the N-terminal domain (PDB file 4db1), the Cα positions of the
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Number
of clusters Significance
2 p < 0.4384
3 p < 0.0003755
4 p < 0.001256
5 p < 0.002577
6 p < 0.005057
7 p < 0.01013
8 p < 0.01778
9 p < 0.03044
10 p < 0.03116

Table 6: Significance calculated from χ2 tests on the ability of 3D clustering to
separate HCM from DCM mutations. The highest significance result is shown in
bold.

Figure 3: Clustering Myosin-7 mutations in the N-terminal region using PDB file
4db1. For the three clusters, HCM mutations are shown in 1: red, 2: green and 3:
blue, while DCM mutations are shown in 1: orange, 2: yellow and 3: cyan. DCM
mutations are over-represented in cluster 3 (cyan); when they appear in clusters 1
and 2, (orange and yellow) they are mostly buried.
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mutated residues were clustered using single linkage hierarchical clustering. For
each of 2. . . 10 clusters, a χ2 test was performed to see how well the clustering
separated HCM from DCM mutations as shown in Table 6. Apart from 2 clusters,
these are all clearly significant at the p < 0.05 level. However, as the number of
clusters gets larger, one needs to take care with the significance levels, because no
more than 20% of expected values should be < 5 and none < 1 (significance will
be over-estimated if either of these is true). For ≥ 3 clusters, the first of these
fails and for ≥ 6 clusters the second also fails. However, between 3 and 6 clusters
the significance is so good, that (while it will be over-estimated) it is probably still
better than 0.05 and 3 clusters is clearly the most significant result. Consequently
we clearly have clusters of residues in the N-terminal region that are over/under
populated with DCM and HCM mutations compared with what is expected.

Figure 3 illustrates the three clusters in the N-terminal domain contained in PDB
file 4db1. Note that the clustering was done on one chain and the results are then
shown on the two chains in the 4db1 crystal structure. In particular, DCM is highly
over-represented in the third (blue/cyan) cluster. DCM mutations in clusters 1 and
2 (orange and yellow) are hardly visible and therefore mostly buried. On the other
hand the DCM mutations in cluster 3 (cyan) are largely on the surface.

To use this information in machine learning, the centroid of each cluster was
calculated and the feature vector for each mutation was expanded by the addition of
the distances from the C-alpha of the mutated residue to each of the three centroids.
Mutations that were in the C-terminal domain (and mapped to PDB files 2fxm and
2fxo rather than 4db1) were given distances of 100.0Å, 100.0Å, 100.0Å from the
three clusters.

3.5 Optimizing the machine learning

As described above, initial training to explore the number of trees and features was
performed using 10 models (each with a random selection of the HCM data) with
the prediction results averaged across the 10. Using a larger number of models
allows more of the HCM data to be exploited in each model while maintaining
balanced datasets. Using 20 models, only one unique DCM mutation can be held
back from training for test purposes. However, the number of models is not limited
to 20 because it is possible to hold one DCM back and then build several models
using different sets of HCMs.

After determining the optimum number of features and trees, the most informa-
tive features were explored together with different numbers of models (5, 11 and
21 models). Odd numbers were used to allow a jury vote in predictions if required.
Addition of the ‘clustering’ feature described above was also explored. The differ-
ent feature sets are described in detail together with summary results in Table 7. In
brief the feature subsets were as follows: ‘All’ the full standard set of 33 informa-
tive features (47 from SAAPdap, but with the 14 redundant features, which were
identical for all mutations, removed); ‘Top 5 voids’ uses only the top five largest
voids (before and after mutation) instead of the standard 10; ‘Delta voids’ uses dif-
ferences between void sizes in native and mutant structures; ‘Set1’ was a selection
of the five features found to be most discriminatory using χ2 tests on each of the
features; ‘Set2’ and ‘Set3’ were sets of features randomly generated within WEKA,
‘Set2’ being based on the ‘All’ dataset and ‘Set3’ being based on the ‘Delta voids’ set.

Initially, the number of models was tested using the full feature set (‘All’), plus
those that reduced the amount of void data (‘Top 5 voids’ and ‘Delta voids’), with
and without the clustering features. Having established that 11 models was the
most effective, the more-reduced feature sets were explored using a smaller value
of mtry owing to the much reduced number of features.
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Number Features
of folds used T mtry Acc MCC
5 All 1000 20 0.576 0.152
5 All + Clustering 1000 20 0.648 0.311
5 Top 5 voids + Clustering 1000 20 0.681 0.368
5 10 delta void + Clustering 1000 20 0.608 0.205

11 All 1000 20 0.682 0.429
11 All + Clustering 1000 20 0.608 0.220
11 Top 5 voids + Clustering 1000 20 0.699 0.427
11 10 delta voids + Clustering 1000 20 0.676 0.521

21 All 1000 20 0.631 0.357
21 All + Clustering 1000 20 0.623 0.293
21 Top 5 voids + Clustering 1000 20 0.627 0.374
21 10 delta voids + Clustering 1000 20 0.560 0.133

11 Set1 + Clustering 1000 5 0.625 0.314
11 Set2 + Clustering 1000 5 0.750 0.531
11 Set3 + Clustering 1000 5 0.699 0.520

Table 7: Summary results of machine learning performance using different features
of HCM/DCM dataset and using different numbers of folds of cross-validation.
(Acc: Accuracy; MCC: Matthews’ Correlation Coefficient; T : the number of trees;
mtry: the number of randomly chosen attributes in every split)
• ‘All’: BuriedCharge, Binding, CorePhilic, CisPro, Clash, Glycine, HBond,
ImPACT, Interface, MutantLargestVoid1. . . MutantLargestVoid10, Native-
LargestVoid1. . . NativeLargestVoid10, Proline, RelAccess, SurfacePhobic, Void.
• ‘Top 5 voids’: BuriedCharge, Binding, CorePhilic, CisPro, Clash, Glycine,
HBond, ImPACT, Interface, MutantLargestVoid1. . . MutantLargestVoid5, Native-
LargestVoid1. . . NativeLargestVoid5, Proline, RelAccess, SurfacePhobic, Void.
• ‘Delta Voids’: BuriedCharge, Binding, CorePhilic, CisPro, Clash, Glycine, HBond,
ImPACT, Interface, DeltaLargestVoid1. . . DeltaLargestVoid10, Proline, RelAccess,
SurfacePhobic, Void.
• ‘Set1’: Uses the most informative features based on χ2 tests: Binding, RelAccess,
ImPACT and Glycine.
• ‘Set2’: A WEKA randomly selected dataset: Binding, RelAccess, SurfacePhobic,
CorePhilic, TotalVoidVolume, MutantLargestVoid, NativeLargestVoid, Clash, Pro-
line, CisPro.
• ‘Set3’: A WEKA randomly selected dataset based on the ‘Delta Voids’ set:
Binding, Interface, RelAccess, ImPACT, Hbond, BuriedCharge, DeltaVoidTotal,
DeltaVoidLargest1. . . DeltaVoidLargest5, Clash, Glycine.
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As shown in Table 7, the best performance was obtained using 11 models with
‘Set2’ plus the clustering features. This gave an accuracy of 75% and MCC = 0.531.
By removing models that performed particularly badly, we reached an accuracy of
79% and MCC=0.61. In these particularly bad models where mutations map to
multiple PDB chains, it appears that some of the structures make the performance
worse.

4 Discussion

4.1 Added value of structural data to face the challenges in pre-
dicting pathogenicity of a missense variant

Patients with heritable cardiomyopathies often carry novel and missense genetic
variants that can be difficult to interpret. Ideally, novel variants should be tested
using functional studies and/or co-segregation analysis within families38, but both
approaches are difficult to apply and interpret in the clinical setting, particularly
when using high-throughput genetic screening strategies that identify hundreds of
potentially pathogenic variants in patients as well as normal control populations.

In the case of sarcomere protein genes, previously reported and probable
pathogenic variants in MYH7 and MYBPC3 have been reported at a frequency
higher than expected for the prevalence of cardiomyopathy in the 1000 Genomes
database39–41, the NHLBI exome sequencing population data29,30 and the
Framingham and Jackson Heart Study cohorts42. Possible explanations for
these findings include a combination of reduced penetrance for some of these
alleles, digenic and oligogenic models of inheritance and erroneous attribution of
pathogenicity to previously reported variants43.

4.2 Proof of concept evidence for an in silico phenotype-
prediction tool for beta-myosin heavy chain variants
associated with cardiomyopathy

It is logical to assume that the functional consequences of mutations in the same
gene depend on the specific domain or region where the variant is localized44, but
the hypothesis that the structural impact of a missense variant influences phenotype
or outcome has not previously been tested.

In this study, we show that the SAAPpred approach was able to discriminate
between pathogenic and neutral MYH7 variants with a much higher level of accu-
racy (92.7% for all mutations; 99.1% for DCM and 92.4% for HCM) than that of
commonly used prediction models (SIFT: 69.5% and PolyPhen-2 90% for all muta-
tions).

We were also able to develop a model that discriminated between pathological
variants associated with an HCM or DCM phenotype (accuracy of 75% and
MCC=0.531). This was achieved by averaging 11 models using feature Set2
(Binding, RelAccess, SurfacePhobic, CorePhilic, Voids, MutantLargestVoid1,
NativeLargestVoid1, Clash, Proline, CisPro and Clustering) and using 1000 trees
with 5 features. By removing models that performed particularly badly, we
achieved an accuracy of 79% and MCC=0.61. While not as good as the general
pathogenicity prediction, these results are surprisingly good considering the
limited size of the dataset used in training. Indeed the results are as good as
the overall performance of some methods used for pathogenicity prediction —
for example, our assessment of MutationAssessor showed an overall accuracy of
69.8% and MCC=0.453 while SIFT showed an overall accuracy of 76.3% and
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MCC=0.52820. Clearly these results are comparable with what we are able to
achieve for HCM/DCM phenotype prediction which is a much more complex
problem.

In creating this predictor, we analyzed the structural distribution of HCM- and
DCM-associated mutations and found that there was a highly statistically signifi-
cant difference in the locations of these mutations. Referring to Figure 3, DCM is
highly over-represented in the blue/cyan cluster and largely on the surface, while
DCM mutations present in the remaining clusters are mostly buried. The functional
consequences of this distribution warrant further in vitro studies.

4.3 Conclusions and future directions

The inclusion of structural data as part of an in silico pathogenicity prediction model
increases the accuracy of pathogenicity modelling for MYH7. These preliminary and
proof-of-concept data suggest that it is possible to develop an iterative gene-specific
prediction tool for patients with cardiomyopathy.
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