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Using a β-Contact Predictor to Guide Pairwise
Sequence Alignments for Comparative

Modelling
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Abstract—With the exponential rise in the number of available protein sequences, prediction of protein tertiary structure has
become one of the most important tasks in bioinformatics; “comparative”, or “homology”, modelling is able to provide accurate
models, but sequence alignment is a critical task. A strong correlation holds between the RMS deviation of models and the
occurrence of errors in the alignment. In order to correct such errors, we developed BCAlign, based on an optimization procedure
taking into account the correctness of the assignments of β-contacts, together with a standard scoring system. A β-contact
evaluator (BCEval), based on a mixture of neural networks, is used to evaluate the assignments. The evaluation of β-contacts has
proved to be a useful measure in improving alignments for comparative modelling. Considering the fraction of useful alignments
below 3Å, the models generated by BCAlign have shown a significant overall improvement compared with Needleman and
Wunsch’s pairwise and multiple alignments obtained with MUSCLE. Further improvements were observed where BCEval shows
high confidence in the alignments generated. The method has been made available as a web server at http://iasc.diee.unica.it/
bcserver, with a REST-style interface also available.

Index Terms—Homology Modelling, Sequence Alignment, β-contacts, Ensemble Architectures, Artificial Neural Networks.
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1 INTRODUCTION

The difference between the number of protein se-
quences translated from sequences held in GenBank
[3] and the number of protein structures held by the
PDB (Protein DataBank) [4] is vast. Only recently have
high throughput methods started to be put in place
to solve protein structure. Comparative modelling [5]
offers a way to bridge the gap between the number
of sequences and structures.

Comparative modelling generally relies on know-
ing the structure of a homologous protein and us-
ing that as a template to build the structure of a
protein. Methods include 3D-JIGSAW [2], FAMS [28],
ESyPred3D [20], RAPPER [8]. COMPOSER [37], [38]
and the particularly popular SwissModel [1], [31] and
MODELLER [10], [32], [41].

However, the limiting factor in all these methods
is obtaining the correct alignment. This is the most
important stage of comparative modelling [7], [24],
but unfortunately, particularly at low sequence iden-
tity, it can be the most difficult to get right. The
sequence alignment one wishes to achieve is the
alignment that would be obtained by performing a
structural alignment and reading off the resulting
sequence alignment. Of course the structure of the
target is not available, so one must rely on a sequence
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alignment. While multiple alignment can help, the
sequence alignment can often differ substantially from
the structural alignment.

There are numerous methods for performing struc-
tural alignment which often differ in the precise de-
tails of their results (e.g. CE [34], SSAP [39], STRUC-
TAL [36], DALI [14], MATRAS [17], VAST [12], SSM
[19]). Since there are many different ways to superim-
pose two or more protein structures, if the proteins are
not identical (or at least extremely similar), then there
can be no single optimal superposition [27]. For our
purposes, we have chosen SSAP as the gold standard,
“correct” alignment.

The most extreme types of misalignment (Mislead-
ing Local Sequence Alignments, MLSAs) are areas
where the sequence alignment for a region is very
clear, yet it does not match the structure-derived
alignment [33]. We define less extreme misalignments,
where the sequence and structural alignments do
not agree, as SSMAs (“Sequence-Structure MisAlign-
ments”). For example, Figure 1 shows the sequence
and structural alignment of a region from 1igmH00
and 1ap2A00 (a human and mouse antibody heavy
chain variable region respectively) where an SSMA
can clearly be seen.

In their analysis of the CASP2 comparative mod-
elling section, Martin et al. [24] showed that there
was a relationship between the percentage of correctly
aligned residues and the sequence identity (Figure 2
of their paper). We have reproduced that analysis us-
ing approximately 56,000 pairs of homologous protein
domains from CATH [29], [30], each of which was
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1ap2A00 DIVMTQSPSSLTVTAGEKVTM
1igmH00 Sequence alignment EVHLLESGGNL-VQPGGSLRL
1igmH00 Structural alignment EVHLLESG-GNLVQPGGSLRL

****

Fig. 1. An example of an SSMA found between CATH domains 1igmH00 and 1ap2A00. The SSMA is indicated
with asterisks.

Fig. 2. The relationship between the percentage of
correct sequence alignment and the percentage of
sequence identity. Each pair of NRep domains in each
CATH homologous family has been structurally aligned
by SSAP and sequence aligned using a Needleman
and Wunsch global alignment. The structural alignment
is taken as the correct alignment. Twelve outlying
points have been removed after being identified as
occurring, owing to errors in the CATH database.

aligned on the basis of structure using SSAP and on
sequence using a Needleman and Wunsch sequence
alignment [26]. Figure 2 clearly shows that if there
is a high sequence identity between two sequences,
then the sequence alignment is likely to match the
structural alignment. However as sequence identity
decreases, particularly below 30%, the accuracy of the
alignment decreases and the sequence-based align-
ment can be completely different from the structural
alignment. In this paper, we concentrate on improv-
ing the alignment in β-sheets and therefore hope to
improve the models obtained.

Previous work by Lifson & Sander [22], Wouters &
Curmi [42], Hutchinson et al. [15] and Fooks et al. [11]
has shown clear residue pairing preferences between
adjacent β-strands. With this in mind, we believe
that some sequence misalignments can be detected
and corrected by detecting errors in the assignment
of β-contacts. Given a pair of β-strands (a “β-pair”)
assigned to a target from a template after initial
sequence alignment, a measure of the likelihood of
the register between the paired being formed in a real
protein can be used as part of a scoring system of an
alignment algorithm. Thus we developed BCEval, a
β-contact evaluator based on a mixture of neural net-

works, able to predict whether a pair of β-strands is in
the correct register. In addition, a pairwise sequence
alignment method (BCAlign) has been developed able
to take into account the β-contact evaluations. A
search algorithm controlled by an iterative procedure
had to be adopted to find the alignment instead of
a classical dynamic programming technique such as
Needleman and Wunsch. This is because the score
of a substitution in the alignment will depend on
the mutual register with another substitution along
the sequence (because the register will affect the β-
pairing), thus breaking the basic assumption of dy-
namic programming. In other words, while searching
for the best alignment, the contacts of the parent
template are assigned to the target; the scoring system
then takes into account both of the assigned β-strands
at the same time, so that the substitutions within a
strand cannot be scored without taking into account
the information about the neighbouring strand.

In this paper, we introduce both BCEval and
BCAlign. The accuracy of BCAlign is assessed against
(i) the standard Needleman and Wunsch pairwise
sequence alignment, (ii) multiple alignments obtained
with MUSCLE [9] and (iii) an equivalent of BCAlign
without the use of the evaluator (NoBCAlign). Addi-
tionally, the RMSD of models built using the different
alignments is compared. The method has been made
available as a web server at http://iasc.diee.unica.it/
bcserver.

2 METHODS

When the homology modelling target and template
sequences are aligned, the structural characteristics of
the template are assigned to the target. Thus the sec-
ondary structure and the relative position within the
structure (including interactions with other residues)
are immediately known for the target sequence. A
mis-alignment will lead to a wrong structural assign-
ment. Thus we are able to examine contacts between
residues in adjacent β-strands in an attempt to detect
misalignments using an evaluation of an assigned β-
pair being correct based on machine learning (BCE-
val).

At first glance, including these evaluations in the
scoring system of a typical dynamic programming
algorithm seems straightforward. Unfortunately, the
main dynamic programming assumption (that the
optimal solution of the problems should depend on
the optimal solution of its sub-problems) is broken.
In order to overcome this limitation, we developed a
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----AA-----AA------BBBB-----CCCCC-----CCCCC-------BBBB------
----12-----12------1234-----12345-----54321-------4321------
QSPVDIDTHTAKYDPSLKPLSVSYDQATSLRILNNGHAFNVEFDDSQDKAVLKGGPLDGT
CCCCEECCCCCEECCCCCCEEEECCCCCEEEEEECCCCEEEEECCCCCCCEEEECCCCCC

Fig. 3. An example chain indicating the residues in contact. The letters in the first line indicate the β-strand
pairs. The numbers in the second line indicate the residues in contact within the same pair. For example, the two
residues labelled B1 form a contact.

technique which adopts a heuristic search algorithm
(BCAlign).

2.1 Developing the β-Contact Evaluator (BCEval)
The evaluation of β-contacts can be tackled as a
prediction problem, similar to contact map predic-
tion. We must (i) define the training data, (ii) find a
suitable representation of the input and output data
and (iii) set up a proper architecture and learning
algorithm(s). Methods were implemented using the
GAME framework [21], written in Java 6.0.

Generic contact predictors such as those by Cheng
& Baldi [6] and Tegge et al. [40] have low accuracy
owing to the difficulty of predicting all possible con-
tacts occurring in a protein (including between α-
helices). Even more specific predictors, specialized in
β-contacts, report accuracies below 50% [23]. Fortu-
nately, we already know which strands are in contact
and we can concentrate on small shifts around a
given position. Thus, we developed a new system
specialized in recognizing a contact from the “shifted”
versions that could be identified from an alignment
procedure.

2.1.1 Data Representation
The β-pairs must be represented in a fixed-length vec-
tor to obtain an input suitable for a neural network.
The input vector must contain the residues of the two
strands involved in the pairing and shifted versions
of the same pair must be clearly recognizable.

Figure 3 shows an example in which the contacting
residues belonging to different β-strands are indi-
cated. While the length of the β-segments is vari-
able, a fixed-length vector is needed for the data
representation. A window of N residues would be
perfectly suited to strands of length N , while informa-
tion would be lost for pairings of longer strands and
shorter strands would include residues not involved
in contacts.

In addition, one must account of both parallel and
anti-parallel strands. For instance, taking a window
of four residues along the anti-parallel strands, B, in
Figure 3, the encoding must indicate that the leucine
at the first position in the first strand is in contact with
the glycine in the last position of the second strand,
not the valine in the first position. The different
hydrogen-bonding patterns observed in parallel and
anti-parallel sheets also result in different propensi-
ties in the contacts between residues, as shown by

Hutchinson et al. [15] and Fooks et al. [11]. For these
reasons, a “mixture of experts” approach has been
adopted: one expert only deals with strands of one
type and length.

Profiles, obtained after three iterations of a PSI-
BLAST search of the whole protein against uniref901,
(inclusion threshold = 10−3; defaults for other param-
eters) were used to encode the residues in the window.
A simple position-independent coding of the residues
gave worse performance.

2.1.2 The Architecture
Figure 4 shows the architecture of BCEval. The “core
evaluation module” of BCEval consists of a mixture
of 13 neural networks, each one specialized for a spe-
cific length (1,2,3,4,5,6,7+) and type (parallel or anti-
parallel) of β-pairing. The window length includes all
(and only) the residues involved in each pairing, such
that each neural network has a fixed-length vector
as input, representing the residues involved in the
contact. Simpler architectures with only one neural
network and fixed input length (1, 2, 3) were tried
first, but gave lower accuracy. The final output is
obtained by averaging three core evaluation modules
trained separately.

2.2 Training and Test Data Composition

A reference test set, TESTDOM, was built by selecting
10% of the total codes in the CATH database [29] at
the homologue level and extracting the corresponding
domains. A subset of the possible pairs of homolo-
gous domains in TESTDOM, mostly distant homo-
logues (67% were below 30% sequence identity), was
used to build a set of domain pairs. The resulting
set, TESTALIGN, consists of 743 proteins, which have
been used to test the alignment algorithms. In the
same way, another set, TRAINALIGN, was obtained
from the domains excluded from TESTDOM in order
to train the parameters of the alignment algorithms.
Finally, a set of protein chains, TRAINCH, consist-
ing of protein chains from a dataset with identity
< 25%, 2. selected in order not to include any chain
containing the domains in TESTDOM, was used as
a starting point to obtain contacts used in training
BCEval; whole chains were used rather than domains

1. http://www.ebi.ac.uk/uniref/
2. http://bio-cluster.iis.sinica.edu.tw/∼bioapp/hyprosp2/

dataset 8297.txt
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Fig. 4. The BCEval architecture. The guarding func-
tions ensure that only one neural network is activated
at a time. The “parallel” guard is able to distinguish
between parallel and anti-parallel strand pairs, while
the “length” guard dispatches based on the length. In
the example, an anti-parallel pair of length 3 is given
so activating the path shown in bold. Three core units
consisting of independently trained neural networks
are averaged to obtain the final evaluation.

in order to use DSSP [16] outputs from the EBI3

directly. Contacts included in the training of BCEval
were obtained from TRAINCH DSSP files; these files
include the position of the contacts between paired
residues in β-strands. Negative examples (i.e. pairings
not observed to be in a β-contact) were obtained by
a synthetic sampling around the actual contacts. A
Gaussian distribution (µ = 0, σ =

√
5) around the

positive examples was used to perform the sampling.
The negative and positive samples were balanced,
without taking into account the observed distribution.
As seen in Figure 2, the extent of the observed shifts
depends greatly on the sequence identity, making
it hard to model the observed distribution correctly
and, in any case, balanced inputs generally result in
better learning. This partial synthetic sampling was
preferred to sampling real data in order to obtain
more, and more varied, samples. In practice, the neg-
ative data are randomly generated at each training
iteration, so improving the diversity given to the
training algorithm.

As for the training technique and parameter set-
ting, each expert is a 3-layer feed-forward neural
network, trained with a variant of back-propagation,
with initial learning rate = 0.001 and momentum =
0.1. The learning rate is adjusted between iterations
with an inverse-proportion law. The number of input
neurons is 20N , (where N is the size of the input
window) and the number of hidden neurons is 75
for each neural network. A single output neuron
indicates whether the given input is a contact or not.
To help the training algorithm avoid local minima, the
training set was randomly shuffled at each iteration.

3. ftp://ftp.ebi.ac.uk/pub/databases/dssp/

Furthermore, each protein provides only a subset of
its inputs, according to a random choice performed
in accordance with a parameter, n. In particular, a
random value k is generated in the range [0, n − 1]
and the inputs with index k, k + n, k + 2n, . . . are
provided to the learning algorithm.

To prevent the training process from stopping with
a local oscillation of accuracy (evaluated on a valida-
tion set consisting of a 10% of TRAINCH, not used in
the back-propagation process), weights are recorded
when a minimum is encountered on the validation
set, but the training continues until the error on the
validation set increases for 10 consecutive iterations.

2.3 Developing the Pairwise Sequence Alignment
Algorithm (BCAlign)

The definition of an alignment algorithm includes
two separate parts: (i) the cost function i.e. a scor-
ing scheme used to evaluate an alignment; (ii) the
alignment strategy, i.e. a strategy which gives the
succession of substitutions, insertions and deletions
which minimize the cost function. Here we describe
a cost function which includes the evaluation of β-
pairings made by BCEval and an alignment strategy
suitable for use with the given cost function. Full
details of both are provided in Appendix A.

2.3.1 Defining the Cost Function
In brief, given a pairwise sequence alignment, A,
between a template and a target sequence (the struc-
ture of the template being known), its cost4 c(A,Stpl),
evaluated with respect to the structure of the template
sequence, in BCAlign consists of the sum of the
following three main contributions:

c(A,Stpl) = cnw(A) + cβi(A,Stpl) + cbc(A,Stpl) (1)

where Stpl is the structure of the template sequence.
The component cnw is the result of a classi-

cal similarity-based scoring scheme with affine gap
penalties. The cost of the substitutions is obtained
from a similarity scoring matrix Ms (e.g. BLOSUM62),
reversed so as to obtain a cost matrix Mc = −(Ms −
max(Ms)).

The term cβi in Equation 1 is related to the total
number of gaps within the β-strands in the template.
This is similar to the approach adopted in PIMA [35].
This component has been included in order to increase
the number of β-pairs available for the evaluation:
the larger costs help to avoid insertions and deletions
inside β-strands, which rarely occur during evolution.

The last term in Equation 1, cbc, results from the
evaluation of β-pairs in the target sequence (assigned
from the template, based on the alignment). This has
two effects:

4. Scores, usually preferred in the scoring systems of sequence
alignments, can also be viewed as the opposite of costs.
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• to increase the cost of β-pairs that appear to be
mistakenly assigned (i.e. shifted),

• to decrease the cost of β-pairs that appear to be
assigned correctly.

The first of these changes the equilibrium of the
alignment space, moving away from the solutions
suggested by the other two terms that lead to wrong
β-pair assignments. The second, although not directly
improving the alignment, prevents drifts when cor-
rect assignments are found with the standard scoring
scheme. The change of a pair of assignments may
affect the solution in many different places within the
alignment.

The term cbc is composed of two elements, summed
over all β-pairs:

1) A term proportional to −p̃(bptgt), where p̃(bptgt)
is the estimation of the probability of the β-
pair bptgt being formed, given by BCEval (see
Appendix A),

2) A term to stabilize the algorithm in the presence
of wrong estimations which also takes account of
the corresponding β-pair in the template (bptpl),
for which the estimation error is known to be
1−p̃(bptpl). The requirement for this term derives
from the assumption that, with the correct align-
ment, the errors in the estimation of p on the
template and target are correlated. Therefore, if
p̃ for the template is significantly larger than for
the target, we have a strong indicator of a prob-
able error in the alignment (see Appendix A).

2.3.2 Minimizing the Cost Function

Dynamic programming is generally used to minimize
a cost function for sequence alignments and is the
best choice when the optimal solution can be built
incrementally by calculating the best solution for its
sub-problems. With the proposed cost function, this
assumption is broken, since the cost of a substitution
is related to other substitutions along the sequences.
A natural generalization of dynamic programming is
represented by a search algorithm, which allows to
evaluate the path dynamically.

Using a global-search algorithm, the best alignment
can be found by searching for the path in a tree which
optimizes a score or cost function, leading to the end
of the sequences. Figure 5 gives an example of a
simple alignment performed with a best-first search
strategy.

However, search algorithms may lead to an explo-
sion in computational cost; in Figure 5, a blind (brute-
force) search strategy is adopted, with the conse-
quence that many nodes are expanded unnecessarily
before finding the solution. The expected number of
expanded nodes grows exponentially with the length
of the path, which grows linearly with the length
of the sequences. Consequently, to reduce the num-
ber of expanded nodes, heuristic search strategies,

Fig. 5. An example of alignment performed with a
search algorithm. The search can be represented by
a tree, in which the edge score is given by a simple
scoring system (-1 for gaps, 1 match, -2 mismatch).
Each circle represents a node, indicating the position
in the two sequences and the path score. With a best-
first search (i.e. the most promising nodes are opened
first), the nodes shown with solid lines are expanded.
In addition, nodes outside the solution path (in dashed
lines) are explored, according to the local score. On the
left, the corresponding Needleman and Wunsch matrix
is indicated: note that the values in the Needleman and
Wunsch matrix correspond to the scores of a node only
when the best path to that node is followed.

such A* [13], can be adopted. A perfect heuristic
(i.e. one which provides perfect estimates) for the
components of the cost cnw and cβi (Equation 1) can be
obtained by adapting the approach used by dynamic
programming algorithms. Hence, with only these two
components, only the nodes in the optimal path are
expanded by the A* algorithm, making this equiv-
alent to a global dynamic programming approach.
However, the component cbc in Equation 1 cannot
take advantage of any heuristic cost estimator and
is relatively expensive to compute — a search algo-
rithm computing this component dynamically would
be computationally too expensive. Consequently, an
iterative approach was adopted: after each iteration
(the first being run without the component cbc), the
resulting β-pairs are collected and evaluated for use in
the next iteration. The additional information is thus
introduced step-by-step, permitting the algorithm, at
each iteration, to escape from misleading pairings
reached by following the other two components of
the cost (cnw and cβi). The Iterative-Deepening A*
(IDA*) [18] algorithm is used to perform the search.
For further details, see Appendix A.

2.4 Evaluation Criteria
Two criteria were used to evaluate the results: (i) the
fraction of correct substitutions (FCS) was measured
by comparing the sequence alignment against a refer-
ence structural alignment obtained using SSAP [39],
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Fig. 6. Plot of the β-contact predictor (BCEval) score
vs. the “fraction of correct substitutions” (FCS). Where
BCEval scores zero, no β-pairs were assigned after
the alignment because no contacts were present or
because all were broken by gaps in the alignment.

(ii) the RMSD of models generated from the align-
ments using MODELLER [10], [41] in fully automatic
mode with default parameters5. Fitting of models
to the crystal structures was performed using the
McLachlan algorithm [25] as implemented in the pro-
gram ProFit (Martin, A.C.R., http://www.bioinf.org.
uk/software/profit/).

For each experiment, we calculated the average
RMSD of the models obtained as well as the percent-
age of “acceptable” models, i.e. those with RMSD be-
low 3Å, which is considered to be quite a strict
criterion for distant homologues. The percentage of
acceptable models is more indicative of the utility of
the alignments than is the mean, since the latter can
easily be skewed by very bad models. In practical
terms there is no difference between a “bad” and a
“very bad” model.

An additional parameter, the “SSMA distance” (SS-
MAD), defined as the mean distance of each residue
from its correct position in the reference structural
alignment, as used in our earlier work [24] was also
tested, but was found to correlate less well with
RMSD than the simpler FCS measure.

3 RESULTS

3.1 BCEval
On average over a 7-fold cross validation on
TRAINCH, BCEval achieved an accuracy of 0.785,
precision of 0.771, recall of 0.811 and Matthews Cor-
relation Coefficient (MCC) of 0.571 –full results are

5. Only 637 models of the 743 of TESTALIGN were obtained
from the alignments owing to problems in the automatic process
which extracted the indexes for the domains from the PDB files.
The problem is often caused by fragmented domains which include
non-consecutive parts of sequence.

Fig. 7. Plot of the β-contact (BCEval) score vs. RMSD
(Å) for three-dimensional comparative models gener-
ated using MODELLER.

shown in Table 1. In order to assess the use of
BCEval in the evaluation of alignments, the corre-
lation between the actual performance for a series
of alignments and an evaluation metric from BCEval
for that alignment was analysed. This metric was the
mean of the evaluations for the target protein: p̃(bptgt).
Needleman and Wunsch alignments were also gen-
erated, scored with the BLOSUM45 matrix and gap
opening/extension penalty of 13/1. Figures 6 and 7
plot the BCEval metric against the fraction of correct
substitutions (FCS) and the RMSD respectively. The
existence of a considerable correlation between the
scores and the alignment quality suggests that BCE-
val scores can be used effectively to chose the best
alignment in a set and that β-pairs can be exploited
to enhance pairwise sequence alignments.

3.2 BCAlign
Preliminary experiments were run on a subset of
500 domain pairs from TRAINALIGN to optimize
parameters and the following were then used for all
runs: cgo = 22, cgx = 9 cgβ = 6, γabs = 75 and
γrel = 5 (see Appendix A). Substitutions are scored us-
ing BLOSUM45; the algorithm is best suited to distant
homologues since, for sequence alignments between
close homologues, a standard sequence alignment is
usually sufficiently reliable, and very few SSMAs are
detected. The maximum number of iterations was set
to 5 with a limit of one minute imposed on the search
algorithm at each iteration using an Intel SU9600 CPU.
The main code was written in Java and experiments
were scripted using Python via the Jython 2.5 inter-
preter.

The performance of BCAlign was assessed in three
comparisons: (i) with a Needleman and Wunsch
alignment (scored using the BLOSUM45 matrix and
gap opening/extension penalties 13/1, optimized as
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Fold Accuracy Precision Recall MCC
1 0.781 0.765 0.807 0.563
2 0.783 0.774 0.797 0.565
3 0.795 0.777 0.821 0.592
4 0.784 0.777 0.802 0.568
5 0.784 0.768 0.812 0.569
6 0.790 0.764 0.840 0.582
7 0.778 0.770 0.797 0.556
AVG 0.785 0.771 0.811 0.571

TABLE 1
Results for BCEval in a 7-fold cross validation test on

the dataset TRAINCH.

above), (ii) with multiple alignments obtained using
MUSCLE [9], and (iii) with the same search technique,
but without the use of the evaluator (“NoBCAlign”)
–i.e. using optimized parameters as above, but setting
γabs = 0 and γrel = 0. MUSCLE was run using stan-
dard parameters, including all the CATH homologous
sequences contained in TESTDOM in the multiple
alignments.

On the TESTALIGN dataset, BCAlign shows a
relative improvement6 of 11.3% (0.628vs. 0.703) in
FCS compared with Needleman and Wunsch, 1.4%
compared with MUSCLE and 6.2% compared with
NoBCAlign. The RMSD improves by 7.14% (5.99Å
vs. 6.43Å) compared with Needleman and Wunsch,
and by 6.59% compared with NoBCAlign. How-
ever BCAlign performs slightly worse than MUSCLE
(−2.6%) when assessed on RMSD. The large values
of RMSD result from the fact that the majority of
the alignments in the test set have sequence identity
below 25%. In addition, as seen in Figure 7, a few
models have extremely large RMSDs, skewing the
mean value.

The percentage of acceptable models (i.e. with
RMSD < 3.0Å) is probably a more useful measure
of the success of an alignment method. In this ex-
periment, this was 42% for BCAlign, 36% for Needle-
man and Wunsch, 35% for MUSCLE and 39% for
NoBCAlign. Unexpectedly, multiple alignment using
MUSCLE performed worst in this evaluation.

Better results are obtained by restricting compar-
isons to data for which we expect BCAlign to perform
well, i.e. where a large number of β-pairings are
present and the BCEval score improves. For struc-
tures with at least 8 β-pairs (58% of the alignments)
the RMSD improvement is 1.22% over MUSCLE and
8.83% over NoBCAlign. The percentage of acceptable
models improves to 48% for BCAlign, compared with
41% for Needleman and Wunsch, 39% for MUSCLE
and 44% for NoBCAlign, evaluating the same set of
models.

In addition, the BCEval scores can be used to select
those cases where BCEval makes confident predic-

6. Relative improvements are calculated with the formula:
RI(a, b) =

(a−b)
(a+b)/2

· 100

Fig. 8. Average improvement in FCS and RMSD com-
pared with MUSCLE at different inclusion thresholds.
The threshold is an a priori measure of the confidence
about the alignment, which consists of the difference
in the BCEval score between alignments obtained with
BCAlign and MUSCLE. At each point in the plot, the
alignments below the given threshold are included. The
percentage of included alignments at each threshold is
also shown.

tions. Figures 8 and 9 show the average relative
improvement in RMSD and FCS between BCAlign
pairwise alignment and MUSCLE multiple alignment,
when varying an inclusion threshold based on the
improvement in the assignment of β-pairs when com-
paring MUSCLE and BCAlign alignments, as eval-
uated using BCEval. The graphs clearly show that,
by using an inclusion threshold of less than −0.3
(thus including up to 20% of alignments), substantial
improvements in FCS and RMSD can be obtained
compared with other methods. For example, taking
alignments with at least 8 β-pairings and an inclusion
threshold of−0.3 (Figure 9), the percentage of proteins
with RMSD lower than 3Å is 39% for BCAlign, 21%
for Needleman and Wunsch, 15% for MUSCLE and
26% for NoBCAlign.

Overall, BCAlign showed a considerable improve-
ment compared with conventional pairwise Needle-
man and Wunsch alignment of 11.3% in FCS on a
set of 743 alignments of domains not showing ho-
mology with the data used to train the evaluator.
Three-dimensional models obtained from the align-
ments show an average RMSD improvement of 7.14%,
compared with standard Needleman and Wunsch
sequence alignments. In addition, BCAlign results
are, on average, comparable with multiple alignments
obtained with MUSCLE. However, Figures 8 and 9
show that choosing the 20% best-scoring alignments
according to the evaluator, models obtained with
BCAlign show a considerable improvement in the
RMSD of about 10% over MUSCLE. The percentage
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Fig. 9. Average improvement in FCS and RMSD com-
pared with MUSCLE at different inclusion thresholds,
for proteins containing at least 8 β-pairs. The threshold
consists of the difference in the BCEval score between
alignments obtained with BCAlign and MUSCLE. At
each point in the plot, the alignments below the given
threshold are included. The percentage of included
alignments at each threshold is also reported.

of acceptable models shows an improvement of about
22% over MUSCLE when all proteins are considered
and about 23% when only proteins containing at least
8 β-pairs are considered.

In conclusion, BCAlign appears to perform best
when used in a mixed environment, in which different
techniques compete while taking into account the
scores assigned by BCEval. Restricting the use of
BCAlign to those cases where BCEval makes the most
confident predictions greatly increases its effective-
ness. Even including the best 50% of the alignments
shows BCAlign to be a good strategy (5% improve-
ment over MUSCLE).

4 CONCLUSIONS AND FUTURE WORK

Sequence alignment is the most critical task in com-
parative modelling: a strong correlation holds be-
tween the RMS deviation of models and the occur-
rence of errors in the alignment. In order to improve
alignments, we have exploited the likelihood of a
given pairing between β-strands being correct. Since
the location of β-strands is known for the template
it can be assigned to the target sequence after the
alignment. Our β-contact evaluator, BCEval, estimates
the likelihood of assigned β-pairings occurring in real
proteins by using a mixture of neural networks.

BCEval has then been exploited in a novel sequence
alignment technique, BCAlign. We have presented
a scoring system which combines a normal system
based on a substitution matrix with BCEval. Since it
is not possible to use standard dynamic programming
with this scoring system, BCAlign resorts to a search

algorithm, guided by an external loop to control the
maximum run time.

Experiments confirm the validity of the approach:
BCEval predictions show a considerable correlation
with correct β-pair assignments and alignments ob-
tained with BCAlign show that the evaluation of
assigned β-pairs can be successfully exploited to en-
hance sequence alignments.

Finally, the implementation of the algorithms can
probably be further improved. The computation is
still not sufficiently efficient, frequently reaching the
time limit for long sequences which, on average, will
have more β-strands that can be exploited by the
method and therefore are likely to show the best im-
provements. The search algorithm could be improved,
particularly by enhancing the heuristic function to
decrease the alternative paths that are explored. Al-
ternatively, it may be possible to design a better
control loop able to include the evaluations without
overloading the search algorithm, or to use stochastic
local search algorithms, including genetic algorithms.
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APPENDIX A
A.1 Defining the Cost Function In Detail
Given a pairwise sequence alignment, A, between a
template and a target sequence (the structure of the
template being known), let us recall that the cost
c(A,Stpl) is defined as the sum of three contributions,
i.e. cnw(A), cβi(A,Stpl), and cbc(A,Stpl), where Stpl
denotes the structure of the template sequence (see
also Equation (1)).

The component cnw is the result of a classi-
cal similarity-based scoring scheme with affine gap
penalties:

cnw(A) = cgo ·ngo+ cgx ·ngx+
∑
i,j

Mc(Ptpli , Ptgtj ) (2)

where i and j indicate the position of the substituted
residues, ngo the number of gap openings, and ngx
the number of gap extensions, all according to the
alignment A. cgo is the cost of opening of a new
gap, cgx is the cost of extending a gap, and Mc is
a substitution cost matrix obtained by reversing a
similarity scoring matrix Ms (such as BLOSUM62):

Mc = −(Ms −max(Ms)) (3)

The second term, cβi, in Equation 1 is an additional
gap penalty to penalize gaps within the β-strands of
the template:

cβi = ngβ · cgβ (4)
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where cgβ is β-specific gap penalty and ngβ is the
number of gaps within β-strands.

The last term in Equation 1, cbc, results from the
evaluation of β-pairs in the target sequence (assigned
from the template, based on the alignment). Consid-
ering p̃(bptgt) as the estimation of the probability of
the β-pair bptgt being formed, it is reasonable that the
cost c(bptgt) should be proportional to −p̃(bptgt). The
value of the cost should be large enough to allow
the overall cost function to escape from misleading
minima obtained with the standard scoring system.
Thus, the cost should also be proportional to the
number of residues involved in the pairing (nbp).
The following quadratic formula gave the best stable
performance:

cevabs
(bptgt) =

{
+(0.5− p̃(bptgt))2 · nbp if p̃ ≤ 0.5

−(0.5− p̃(bptgt))2 · nbp if p̃ > 0.5
(5)

An additional term has been included in order to
stabilize the algorithm in the presence of wrong es-
timations. This contribution also takes account of the
corresponding β-pair in the template (bptpl), for which
the estimation error is known to be 1 − p̃(bptpl). The
requirement for this term derives from the assumption
that, with the correct alignment, the errors in the esti-
mation of p on the template and target are correlated.
Therefore, if p̃ for the template is significantly larger
than for the target, we have a strong indicator of a
probable error in the alignment. With p̃(bptpl)− p̃(bptgt
denoted by δp̃, this relative contribution is given by:

cevrel(bptgt, bptpl) =

{
δ2p̃ · nbp if δp̃ > 0.1

0 otherwise.
(6)

The total cost for a single β-pair is then:

cev(bptgt, bptpl) = γabs · cevabs
+ γrel · cevrel (7)

where γabs and γrel are given as parameters (note that
in NOBCalign, γabs and γrel are set to zero.) The total
cost for an alignment is given by the sum of cev , for
all the β-pairs resulting from the assignment of the
template structure (Stpl) to the target (S̃tgt):

cbc(A,Stpl) =
∑

bptpl∈Stpl

bptgt∈S̃tgt

cev(bptgt, bptpl) (8)

A.2 Minimizing the Cost Function In Detail
A search algorithm is completely defined by:
• The search problem. This is defined by the tuple:

(S0, operator-set, goal-test, f),
where S0 is the start state; operator-set defines the
set of states that can be reached from a given
state; goal-test can say whether a given state is
the goal or not; f is an evaluation function which
gives a score (or cost) for a given path (sequence
of states).

• The search strategy. This determines the order in
which the nodes are expanded. For instance, a
best-first strategy always expands a node with
the best value of f .

With a global-search algorithm, the best alignment
can be found by searching for the path in a tree which
optimizes f , leading to the end of the sequences.

Using a blind (brute-force) search strategy, many
nodes are expanded unnecessarily before finding the
solution; this may lead to an explosion in computa-
tional cost. The number of expanded nodes is greatly
reduced by adopting a heuristic search algorithm such
as A* where the path cost of a given node n is the sum
of two terms:

f(n) = g(n) + h(n) (9)

g being a path cost function, and h being a heuristic
function, expected to estimate the cost from that node
to the solution. If the cost increases monotonically
along the path and the heuristic function is “admis-
sible” (i.e. it is an underestimation of the real cost of
the solution) the A* algorithm is guaranteed to find
the path with minimum cost. The complexity becomes
linear if the estimation given by the heuristic function
is exact.

Using the cost function defined in Equation 1 as
g(n), a heuristic function can be devised to estimate
exactly the first two terms of the cost, but an exact
estimate cannot be given for cbc(A,Stpl); the com-
plexity rapidly increases with the length of the se-
quences to be aligned. In order to control the run time,
rather than dynamically apply the evaluator during
the search, an iterative procedure has been used: at the
i-th iteration, the pairings found in all i − 1 previous
iterations are evaluated, until a reasonable trade-off is
found.

Figure 10 presents the pseudo code for the iterative
procedure. The function bc search performs a search,
applying the costs for the pairs obtained for the β-
pairs encountered in the solutions of previous iter-
ations. The iterations continue until convergence, or
until an iteration limit is reached.

The A* evaluation function has been used in
the alignment search algorithm, with the Iterative-
Deepening A* (IDA*) search strategy. In our case, a
search state is indicated by S = [i, j], where i and j
represent the relative position in the sequences, and
can also be viewed as coordinates in a Needleman and
Wunsch-like cost matrix. The heuristic search problem
is given by:
• S0 (start state): [0, 0]
• goal-test: [i0, j0], i0 = length(P1)∧j0 = length(P2)
• operators: [i0, j0] → {[i0 + 1, j0 + 1], [i0 +

1, j0], [i0, j0+1]} (substitution, insertion, and dele-
tion respectively). Each operation is defined pro-
vided that i ≤ length(P1) ∨ j ≤ length(P2).

• g (cost function): depends on the path from the
start state to the current state. It includes the costs
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def bc_align(template_seq, target_seq, template_str):
c_pairs = set()
for MAX_ITERATIONS times:

solution = bc_search(template_seq, target_seq, c_pairs)
new_pairs = c_pairs + get_c_pairs(solution, template_str)
if len(new_pairs) > len(c_pairs):
c_pairs = new_pairs

else: #no new pair found
break

return solution

Fig. 10. The BCAlign iterative algorithm pseudo-code, in Python-like syntax

for the substitutions and gaps along the path,
and the costs arising from β-pair evaluations. The
cost function is basically c as defined in Equa-
tion 1, but for performance reasons, the values
are rounded to the nearest integer.

• h (heuristic function): the heuristic function is
the estimated cost for the remaining part of the
sequences from the current state. A matrix HP1,P2

gives the estimation: h([i, j]) = HP1,P2
(i, j) and is

constructed similarly to a Needleman and Wun-
sch matrix, minimizing the sum of the terms cnw
and cβi.
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