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ABSTRACT

Summary: Structural biology relies on specific file formats to

convey information about macromolecular structures. Traditionally

this has been the PDB format, but increasingly newer formats

such as PDBML, mmCIF and MMTF are being used. Here we

present atomium, a modern, lightweight, Python library for parsing,

manipulating, and saving PDB, mmCIF and MMTF file formats. In

addition, we provide a web service, pdb2json, which uses atomium

to give a consistent JSON representation to the entire Protein Data

Bank.

Availability and Implementation: atomium is implemented in

Python and its performance is equivalent to the existing library

BioPython. However, it has significant advantages in features and

API design. atomium is available from atomium.bioinf.org.uk

and pdb2json can be accessed at pdb2json.bioinf.org.uk

Contact: andrew@bioinf.org.uk, andrew.martin@ucl.ac.uk,

sam.ireland.09@ucl.ac.uk

Keywords: Algorithms, Protein structure, Structural bioinformatics,

Parser, Protein databank

1 INTRODUCTION

Structural biology is the study of biological macromolecules at the

molecular level, specifically the arrangement of their atoms in space,

and how this atomic structure dictates their functions.

For any computational analysis of these structures, a

representation of them must be stored on disk, and from the early

days of structural biology, the PDB (Protein Databank) file format

was used to represent these structures (Bernstein et al., 1977).

This format uses 80-character lines, with fields defined by position

along that line, to represent information about the atoms in a

structure. This includes information about the atoms themselves

(their coordinates, names, connectivity), information about their

organisation (residue and chain information), and meta information

about the structure such as how it was generated, who generated it,

and the experimental conditions.

In the case of the majority of structures, which are generated by

X-ray crystallography, the coordinates of the atoms in these files

represent the asymmetric unit — the repeating unit of the crystals.

This may not be the biologically relevant structure, so these files

contain biological assembly instructions: transformation matrices

which are applied to the polymers in the structure to recreate the

biologically relevant structure.
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Over time, the limitations of the PDB file format have become

apparent (Westbrook and Fitzgerald, 2005). Most seriously, the

numeric atom identifiers are defined by a fixed-width field of five

characters, meaning that the maximum atom ID is 99999, limiting

the number of atoms a single file can contain. Initially this problem

was not frequently encountered and, where it was, the structure was

split over several files. Eventually however, new file formats were

introduced.

The mmCIF file format was introduced in 1997 as an extension

to the existing Crystallographic Information File format. It uses a

space-separated, linked table format to hold much more information

than PDB files, and with no upper limit on structure size (Bourne

et al., 1997; Deshpande et al., 2005). The PDBML format uses

XML to represent structures (Westbrook et al., 2004). Most recently,

a binary form of mmCIF optimised for transmission over the web,

MMTF, has also been introduced (Bradley et al., 2017). The PDB

file format has now formally been deprecated in favour of mmCIF,

although it remains in widespread use.

Computational tools for processing these file formats and

processing the models they represent are of great importance

to structural biology. There are various examples for different

languages, such as BioJava for Java (Lafita et al., 2019), and

BiopLib for C (Porter and Martin, 2015). These libraries provide

the user with a standard interface for analysing very diverse

structures, by representing them in terms of a small number of object

types, such as atoms, chains and residues, and provide a layer of

abstraction that makes more complex tasks such as creating scoring

functions more straightforward. Python, a common programming

language in Bioinformatics, has traditionally used the general

purpose library BioPython to parse these structure files (Cock et al.,

2009). However there are limitations to this library, as will be

outlined below.

Here we present atomium, a modern, lightweight, fast parser of

.pdb, .cif, and .mmtf files. It can read from, and save to, these file

types and has powerful tools for processing and manipulating the

structures they contain. It also makes Protein Data Bank structures

available in the JSON format using the pdb2json web tool, which

is a wrapper around atomium. As JSON is a very widely used

data representation format (particulary in transmission over the

web), and as JSON parsing is part of the standard library of

most programming languages, this additional tool makes the data

contained in the Protein Data Bank more easily accessible to those

less familiar with the traditional file formats.
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Command Result

model.atoms() All atoms

model.atoms(element=’N’) All nitrogen atoms

model.atoms(mass gt=14) Atoms with mass greater than 14

model.atoms(name regex=’CA|CB’) CA and CB atoms

model.atoms(het name regex=’CYS|HIS’) Atoms in cysteine and histidine residues

model.atoms(chain length lt=100) Atoms in chains shorter than 100 residues

Table 1. Examples of the filtering syntax that all atomium structures have by virtue of implementing the StructureClass metaclass.

Fig. 1. The relationship of structure classes in atomium, representing the

hierarchy of types. While the structures can be created from scratch, this

hierarchy has been designed to reflect the hierarchy of object types in PDB

and mmCIF files.

2 METHODS

2.1 atomium Library Structure

The inner workings of atomium can broadly be divided into two

areas: the core structure classes for actually representing molecular

structures, and the functions for parsing data from various file types

and creating ‘models’ (i.e. data structures) from them.

The core structure classes are how atomium represents molecular

structures. These can in theory be used to create structures manually

by creating each atom explicitly although, in practice, structure

creation will usually done by the parsers. There is a class for the top-

level models themselves (the container that all the other structures

inhabit) and for each of the sub-structure types usually encountered

in PDB files. Consequently, there are classes for atoms, for residues,

for ligands (non-polymer molecules), and for chains (Figure 1).

In every case where a structure has a collection of sub-structures

within it (a chain’s residues, a residue’s atoms, etc.), these

sub-structures are stored as a special atomium object called a

StructureSet. These store the objects internally as a mapping of the

structures’ identifiers (IDs) to lists of the structures so that lookup

by ID can be done extremely quickly, but for all other purposes

they behave as unordered sets. IDs are mapped to lists of structures

rather than individual structures because it was necessary to allow

duplicate IDs, usually found in biological assemblies.

2.2 atomium Functionality

All structure classes can also use atomium’s filtering syntax.

The objects can be filtered by any property, nested sub-property,

by the regular expression of any string property (allowing for

substring searches for example), or by numerical comparators of

any numerical property (greater than, less than, etc.). For example,

one can obtain all atoms of a given name, below or above a given

charge threshold, or belonging to any residue of a given name or set

of names (see Table 1).

Amongst other operations, the atomic structures (a chain, a

residue, a ligand etc.) can all be transformed geometrically by

translating or rotating; two atomic structures can be compared by

measuring the RMSD between them, one can specify any atom or

atomic structure and search for other atoms and atomic structures in

the model which are, for example, within a given radius, or which

have a particular property. For instance, the user can identify all sub-

structures in a 5Å radius of a given metal atom which are not water

molecules, or identify all residues within 3Å of a ligand that have

a particular name. The documentation lists the full feature sets, and

these are summarised in Table 2.

As stated earlier, while the user is free to create these structures

manually by accessing these classes directly, it is generally more

convenient to create them by parsing structure files. atomium can

read .pdb, .cif and .mmtf files. In each case the overall process is the

same:

1. Obtain the file contents as a string, either from the local

filesystem, or remotely from the RCSB PDB servers (Rose

et al., 2010) (via HTTP) or a server (via SSH).

2. Determine which filetype it is by looking at the file extension

or, if not possible, by looking at file contents.

3. Convert the filestring to a Python dictionary whose structure is

specific to that file type.

4. Convert that dictionary to a standard atomium data dictionary,

whose structure is the same regardless of the file type origin.

5. Convert that data dictionary to an atomium File object with one

or more models within it (NMR structures typically contain

multiple models). Only one atom in a set of multiple occupancy

atoms is used for the final model — currently the set with

the alternate location identifier that comes first alphabetically
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Feature API

Mass Calculation structure.mass

Relative elemental makeup structure.formula

Centre of Mass structure.center of mass

Radius of Gyration structure.radius of gyration

RMSD structure.rmsd with(other)

Grid Generation structure.grid()

Atom Proximity structure.nearby atoms(n)

Translation structure.translate()

Rotation structure.rotate

Water Removal structure.dehydrate()

Table 2. Summary of the features that atomium sub-structures have, and the API for using them.

Fig. 2. An overview of how parsing of the three file types is done. Because

the three file types converge on a single data dictionary, all three file types

can be represented as JSON.

(almost always A) is used, but future versions will allow this

to be changed. Missing residue information is stored as a

dictionary in the File object; this information comes from

pdbx unobs or zero occ residues rows and REMARK

465 records in mmCIF and PDB files respectively.

Finally, atomium has the built-in ability to generate ‘biological

assemblies’ from the coordinates given in PDB files. In the majority

of structures, which are generated by X-ray crystallography, the

coordinates of the atoms represent the asymmetric unit — the

repeating unit of the crystals. This may not be the biologically

relevant structure, so these files contain biological assembly

instructions: transformation matrices which are applied to the

polymers in the structure to recreate the biologically relevant

structure. atomium can generate new models from the asymmetric

unit coordinates using a single function.

2.3 pdb2json

This process for parsing (summarised in Figure 2) has a number of

advantages over just trying to go from filestring to parsed object in

one step. Making the three filetypes converge at one data structure

(the atomium data dictionary) prevents duplication of effort involved

in going from ‘data’ to ‘Python structure’. It also means that every

file can have a consistent dictionary representation, which means

that they can all be represented as JSON if desired. It is also easier

for testing, as each stage in this (relatively complex) parsing process

can more easily be tested in isolation.

As already noted, the process of parsing a structure file involves

turning the raw filestring (or binary bytestring in the case of MMTF)

into two successive Python dictionaries, before then being turned

into a Python object. Initially this choice of Python dictionary as

internal representation was a decision made to make development

easier. However, Python dictionaries have a structure very similar

to JSON, a data format that is frequently used for sending data over

the web in a very human readable way, as it is essentially just nested

key-value pairs. Thus, if the data dictionary is simply converted

to JSON using Python’s built-in JSON library, atomium becomes

a tool for turning any PDB structure into JSON.

pdb2json provides this facility. This is a simple, lightweight

Django (v2.1, djangoproject.com) web app which uses

atomium to take any PDB code and return the resultant structure

as JSON. This is done using a URL; for example, /2SOD/ will

return the JSON for the PDB 2SOD. It is currently available at

pdb2json.bioinf.org.uk/.

The service is therefore an HTTP alternative to the FTP service

mmJSON by PDBj (Bekker et al., 2016), which provides FTP

downloads of mmCIF structures only, and without the additional

processing of the raw mmCIF table structures that pdb2json

provides.

By default, pdb2json tells atomium to use the .cif representation

for parsing, but this can be altered using, for example,

/2SOD.pdb/. The structure of the JSON returned will be the same

since atomium creates the same data dictionary regardless of file

type, but some values may be different. For example, many .pdb

files have titles etc. in capitals whereas .cif files use title case, and

atom IDs may be numbered slightly different.

If users so wish, they can obtain the initial file-type-specific

Python dictionary as JSON by adding an argument called ‘file’

to the URL with no value, using (for example) the notation

/2SOD/?file. This is generally of limited interest in the case

of .pdb and .mmtf, except as a means of checking the original file

contents pre-processing, but in the case of .cif, it can be very useful.

This is because every attribute of the structure will be accessible

in this dictionary, so if the subset of attributes atomium pulls out
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Fig. 3. a) A comparison of parsing speed between atomium, BioPython (both Python) and BiopLib (C) for the PDB file format. With occasional deviations,

the two Python libraries are broadly equivalent. As expected, BiopLib is faster, particularly at higher atom counts, as it is written in a compiled language.

b) Time taken to parse the same thousand randomly chosen single-model structures in the three file formats using atomium. Time as a function of atom count

is linear and it can be seen that mmCIF structures take the longest, followed by PDB structures and MMTF structures.

of files to annotate its final representation is not sufficient, other

attributes can be obtained from this representation. For example,

atomium File objects have the R-free and R-work attributes, but

there are many metrics for these calculations in the original file,

such as the number of reflections used to generate these numbers.

pdb2json allows access to these metrics too.

PDB structures can be large and some are extremely large indeed.

The user may not wish to download the JSON for an entire structure

when they only need a single metric or set of metrics. Therefore,

pdb2json allows the user to traverse the keys of the JSON structure

using the supplied URL, if the user knows the identifiers for the

relevant objects. For example, while /2SOD/ will return the JSON

for the entire structure, /2SOD/quality/ will return only the

quality sub-dictionary that was part of the original JSON object.

This traversal can be as deep as the user wishes. For example,

/2SOD/models/0/non-polymer/O.153/atoms/4382

will return information about a single zinc atom. In this case, this

URL is the structure 2SOD, but only its first model (they are zero

indexed), the non-polymer structure with ID O.153 in that model

and the atom with ID 4382 in that non-polymer. This requires

knowing the identifier of the atom and its containing HET record,

but if these conditions are met, much smaller HTTP responses can

be requested.

If JSON conversion is required offline, a pdb2json.py script is also

provided in the atomium library itself. This is a simple utility which

imports atomium, loads a file saved on disk, converts it to JSON and

saves it.

3 RESULTS

atomium is currently at version 1.0.3, the 22nd release. It is

downloadable using the Python package manager PyPI and pip

(pip3 install atomium), or by cloning the repository from

GitHub directly (github.com/samirelanduk/atomium).

The master branch always points to the most recent stable release,

with new features being developed on separate branches.

The speed of parsing (raw coordinates without assembly

generation, as BioPython cannot do this) is comparable with

BioPython for the .pdb file format. The two Python libraries were

also compared with the C library BiopLib which, as might be

expected, parsed the structures faster, particularly at higher atom

counts (see Figure 3a). The parsing times for the three file formats

in atomium are of a similar order of magnitude, with .cif taking the

longest (see Figure 3b). In all five cases the relationship between

the number of atoms and the time taken to parse is linear and,

for all comparisons, care was taken to ensure the same kinds of

parsing were being done — no biological assembly generation,

proper relationship parsing and assigning for the sub-structures, etc.

The SnakeViz profile visualisation tool (SnakeViz v2.0.1,

github.com/jiffyclub/snakeviz) can identify

bottlenecks in parsing code, which has been useful in optimising

the atomium codebase. The increased time for .cif parsing can

be partly explained using this tool as it identifies a bottleneck

in scanning the lines of the file for embedded quotation marks.

Because the file format allows for quite complicated nested

quotation marks in lines, the algorithm used to handle them can

be relatively time consuming and is a significant proportion of

the overall parse time. The older PDB file format, for all its other

deficiencies, has no such problem and nor does the newer binary

MMTF format. Supplementary Figures S1–S3 show ‘profiles’ for

each parse process, identifying which sub-functions take up most

time in the overall process.

atomium has been used in the creation of the ZincBind

database (Ireland and Martin, 2019), where its biological assembly

processing capabilities were invaluable in identifying inter-chain

zinc binding sites.
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4 DISCUSSION

Currently the general-purpose bioinformatics library, BioPython,

is generally the structure parsing tool of choice for the Python

programming language, but atomium offers three key advantages:

First, from a purely practical feature-set point of view, at the

time of writing, BioPython does not have the ability to process

the information contained in structure files’ biological assembly

instructions, or create new models from them. This is a serious

problem when dealing with structures whose asymmetric unit is

markedly different from the biological assembly. For example,

the insulin structure 1ZEH contains one subunit of the insulin

hexamer, and the biological assembly instructions are required to

make the true hexamer. BioPython cannot generate these structures

by itself, which makes it unsuitable for examining interactions

between chains. atomium however, can generate these with a single

function, using the numpy library optimised for matrix calculations.

The structures generated from them will have duplicated IDs, but

can still be selected individually by assigning novel names to them

— particularly in the case of chain objects with have no names

assigned to them initially. While atomium does lack some features

that BioPython offers, such as solvent accessible surface and residue

depth, the future addition of such features is straightforward given

the structural representation in atomium.

Second, and more philosophically, atomium adheres more closely

to the Pythonic tenet that a piece of software should focus on

doing one thing only and doing that one thing well. BioPython is a

powerful, but general purpose, bioinformatics library with modules

for many different bioinformatics applications. By contrast atomium

focuses solely on structural biology and specifically on the parsing,

representation and saving of macromolecules. Its API, package

structure, testing suite and documentation are all optimised around

this purpose. On that basis, there is a strong argument that atomium

itself should not be extended to include features such as solvent

accessibility calculation since these are outside the remit of parsing

and representing macromolecular structure.

Third, atomium has a simpler API than BioPython. There is

no need to create a separate parser object; the whole parsing step

can be done with the top-level functions atomium.open and

atomium.fetch.

Finally, the addition of the pdb2json web server around atomium

allows for access to the parsed contents of any PDB file through the

browser in the widely accessible JSON format, removing the need

for specialised parsers altogether if the user so wishes.

5 CONCLUSIONS

The atomium PDB parser is a novel, lightweight Python library

which can handle three of the principal file types of structural

biology, save changes made to them, and generate the structures

contained in their biological assembly instructions for more

biologically realistic models. It contains powerful querying abilities

for the models, as well as other useful metrics and tools.
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