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Abstract

Therapeutic monoclonal antibodies are a successful class of biologic drugs that are

frequently selected from phage display libraries and transgenic mice that produce fully

human antibodies. However, binding affinity to the correct epitope is necessary, but not

sufficient, for a mAb to have therapeutic potential. Sequence and structural features

affect the developability of an antibody, which influences its ability to be produced at

scale and enter trials, or can cause late-stage failures. Using data on paired human

antibody sequences, we introduce a pipeline using a machine learning approach that

exploits protein language models to identify antibodies which cluster with antibodies

that have entered the clinic and are therefore expected to have developability features

similar to clinically acceptable antibodies, and triage out those without these features.

We propose this pipeline as a useful tool in candidate selection from large libraries,

reducing the cost of exploration of the antibody space, and pursuing new therapeutics.



1 Introduction
Monoclonal antibodies (mAbs) have been shown to be a successful class of biologic drugs which

have potential to treat a wide variety of diseases owing to their ability to target a specific antigen,

and therefore potentially any step in a disease pathway [1, 2]. At the time of writing, at least 130

mAbs  have  received  regulatory  approval  from the  U.S.  Food  and  Drug  Administration  or  the

European  Medicines  Agency  with  at  least  42  being  considered  as  ‘fully-human’,  either  from

transgenic mice, phage display libraries, or cloned from recovering patients [3, 4, 5]. The annual

growth of this sector has increased at between 20% and 30% per year [6, 7],  and is likely to

continue to grow as interest increases in the use of antibodies to target previously undruggable

targets [8]. Despite this, throughout the clinical pipeline for the development of new mAbs, there is

a high risk of failure, causing costly discontinuation from trials [9].

Simultaneously, efforts in single cell sequencing techniques have been applied to understand how

the antibody repertoire functions and changes over time at the level of single B cells [10, 11, 12,

13]. This has given researchers the ability to generate dense digital libraries of paired variable

heavy (VH)  and variable  light  (VL)  human antibody sequences that  vastly  outnumber  previous

databases resulting from sequence or structural data (KabatMan [14], IMGT [15], SAbDAb [16]

AbDb  [17]  and  EMBLIg  (abybank.org/emblig/)).  Online  repositories  including  the  Observed

Antibody Space (OAS) [18], cAb-Rep [19] and BRepertoire [20] allow researchers access to these

resources.

With the generation of these in silico databases, efforts to develop screening statistics to identify

sequences with physical characteristics similar to approved therapeutics has become a driver in

the field. Usually, these have been based on antibody developability, which is loosely defined as an

antibody’s intrinsic ability to be produced on an industrial scale, to maintain reasonable stability in

long-term  storage  and  in  patients,  and  to  be  safely  tolerated  by  the  patient  [21,  22].  Such

considerations have now become important in the early stages of drug screening to select the best

quality candidates and avoid costly late-stage failures [1]. Furthermore, developability is important,

but does not guarantee success at clinical trials, where candidates may face discontinuation for

safety or efficacy reasons. Identifying factors important in determining success at clinical trials has

also eluded researchers.

Physicochemical features, including surface charged patches, surface hydrophobic patches, low

thermostability, and post-translational modification sites that introduce heterogeneity, have become

associated with poor antibody developability [23]. Those features that compromise the stability of

the  antibody  can  cause  unfolding,  increase  the  propensity  to  aggregate  in  solution  and  can

increase immunogenicity [24, 25]. At the lead candidate stage, well-defined experimental assays

for measurement are important in the selection of a final lead [26, 27]. However, it has become

useful  to  predict  these  features  at  an  earlier  stage  using  computational  means.  To  this  end,

http://abybank.org/emblig/


sequence-based statistics have been developed based on these features and are available for use

in drug discovery pipelines including the Developability Index [28, 29], AbPred [30], and, more

recently,  the  Therapeutic  Antibody  Profiler  (TAP)  [31]  and  Therapeutic  Antibody  Developability

Analysis (TA-DA Score) [32]. However, these tools can fall short in identifying leads from large

libraries of data, requiring computationally expensive 3D modelling, or only taking one antibody at

a time, which is usually expected already to be a potential lead candidate.

In order to take advantage of the wealth of data now available, the field has also turned to machine

learning as a new avenue of exploration [1, 33, 34]. For protein sequences to be suitable inputs for

machine learning problems, it is necessary to encode them numerically. Previously, this has been

done by using evolutionary or physicochemical and structural features [35, 36, 37], and simple

regression models to identify features of high importance, or to predict features from the sequence

as  done  in  AbPred  [30].  Negron  et  al.  [32]  expanded  on  this  work  and  identified  previously

mentioned  characteristics,  including  hydrophobicity  (assessed  by  hydrophobic  interaction

chromatography),  thermostability  (Tm,  assessed  by  differential  scanning  fluorimetry)  and

aggregation  (assessed  by  cross-interaction  chromatography)  that  were  associated  with  the

identification of clinically acceptable mAbs. Furthermore, this work has demonstrated an ability to

separate  clinical  antibody sequences from antibody repertoires  and to  assign a  developability

score based on these features as part of their ‘TA-DA’ score.

A newer method of encoding protein sequences is using ‘protein language models’ [38]. These are

deep learning encoders trained on the relationships between residues in a sequence using millions

of sequences. The results give dense numerical representations of sequences that may then be

used as training data for machine learning models [39]. In this study, we hypothesized that, rather

than directly predicting physical properties related to developability, antibodies with developable

traits  may  be  selected  by  encoding  them using  protein  language  models  and  comparing  the

encoded antibodies with encoded sequences of current clinical mAbs (i.e. approved, discontinued

and in-development mAbs). Our goal is then to build a high-throughput triaging pipeline exploiting

preliminary  simple  physicochemical  screening  followed  by  machine  learning  using  protein

language models which may be used to select antibodies with good developability characteristics

from large libraries.

2 Results

2.1 Simple physicochemical properties of clinical and library 
antibodies
As a first step, we looked at using physicochemical properties to attempt to identify antibodies with

clinically acceptable properties in a set  of  library antibodies.  The aim was to see whether the

clinical mAbs have a restricted distribution of these properties compared with antibodies from a



library, similar to the approach used by Raybould  et al. [31], except here, we currently use only

sequence statistics that can be calculated quickly without high computational expense.

A dataset was collated consisting of paired VH and VL sequences of clinical stage human mAbs

(n=144)  from  the  October  2021  release  of  TheraSabDab  [3]  marked  as  ‘Whole  mAb’

(Supplementary Table 1) and 10,000 paired sequences randomly selected from the OAS online

repertoire repository (accessed January 2022) [18] (Supplementary Table 2). We refer to this set of

sequences from OAS as our ‘library’.

Physicochemical properties, including predicted ΔG of unfolding [40], iso-electric point (pI) [41] and

CDR-H3 loop length [42] were calculated. Using an unpaired non-parametric t-test, it was observed

that there were statistical differences in the CDR-H3 length and in the predicted ΔG of unfolding for

concatenated  VH and  VL chains  between  therapeutic  and  library  antibodies  (Table 1  and

Supplementary  Table 3).  While  this  demonstrates  a  difference  between  human  repertoire

antibodies and what is found in the clinical mAb dataset, the mean values are relatively similar in

the two datasets making it difficult to use this as an approach to identify antibodies with clinically

acceptable developability characteristics, although it can be used to reject clear outliers.

2.2 Identifying Clinical-like Antibodies from Repertoires Using 
Unsupervised Learning
An unsupervised learning model was proposed as an approach to identify library antibodies with

clinical-antibody-like properties. It would be expected that clinical mAbs would cluster in some N-

dimensional space and that repertoire antibodies with similar properties would be positioned close

to the clinical mAbs. To train an unsupervised learning method, the library and clinical VH and VL

sequences  were  padded  according  to  the  Chothia  numbering  scheme,  then  independently

encoded with various language models: ESM [39], AbLang [43], Sapiens [44] and AntiBERTy [45].

The encodings generated 130,048 features per paired VH/VL sequence. All language models had a

similar  performance for  this  task,  with AntiBERTy somewhat out-performing the other methods

(data not shown).

Various unsupervised machine learning models were tested: linear Principal Component Analysis

(PCA) [46], kernel PCA [46], 2D ‘t-distributed Stochastic Neighbour Embedding’ (t-SNE) [47] and

‘Uniform  Manifold  Approximation  and  Projection’  (UMAP)  [48]  (Figure 1a).  These  algorithms

demonstrate how library antibodies are positioned against clinical mAbs also encoded with the

AntiBERTy language model. For the linear PCA, t-SNE or UMAP, data were arranged into discrete

groups of antibodies which are dictated by VH and VL gene germline pairing (Figure 1b). However,

Non-linear PCA with a radial  basis kernel  function (γ = 500,  Supplementary Figure S1),  when

viewing  the  first  two  principal  components,  gave  a  useful  pattern  of  clustering  where  library

antibodies form a radial pattern with clinical mAbs positioned around the origin (Figure 1a). This



was also true of a held back dataset of human-derived clinical mAbs (n=203) named with the 2016

and 2022 naming conventions [49] in which the source infix was removed, and therefore human

mAbs could not be identified using the ‘-umab but not -zumab’ approach used to identify human

mAbs with the earlier naming schemes (Supplementary Table 4). These held-back antibodies were

positioned close to the original dataset of human-clinical mAbs (Figure 2). This led us to conclude

that repertoire antibodies which are positioned close to clinical mAbs may be likely to share the

developability properties necessary and should be taken forward for potential development.

Cutoffs were then established to select the repertoire antibodies which cluster with the clinical

mAbs in order to extract them. An ellipse function was used in which the principal component with

the greater range for clinical mAbs was taken to be the major axis, and the lesser range as the

minor axis. Z-score thresholds (the number of standard deviations away from the mean) along the

two principal components of the clinical mAbs were used to select where the extremes of the

ellipse should be placed. The Z-score thresholds were optimized by measuring the proportion of

the  clinical  mAbs captured by  the  ellipse against  the  proportion  of  the  library  antibodies  also

captured in the same ellipse. It was expected that, since the spread of antibodies was even across

the first two principal components of the PCA, roughly equal proportions of both groups would be

captured. This was done using all human clinical mAbs (Figure 3a) and with only approved human

mAbs (Figure 3b).

Comparing Figures 3a and 3b, it can be seen that the bars for the OAS (library) antibodies are

consistently lower when the Z-scores are based on the approved antibodies than they are when

based on the clinical (i.e. approved, discontinued and in-development) antibodies. This indicates

that the approved antibodies occupy a tighter distribution than the clinical antibodies. While it is

obvious that the approved antibodies will be a subset of the clinical antibodies, it is less obvious

that they will form a tighter cluster in this projection of the AntiBERTy-encoded parameter space.

This led us to conclude that there may be characteristics of the approved antibodies identified by

the protein language model that would allow them to be separated from the antibodies that were

discontinued.

2.3 Using Supervised Machine Learning to Distinguish Approved 
and Discontinued Clinical antibodies
It is evident that having suitable developability profiles alone is not sufficient for an antibody to

succeed in clinical trials and the clinical dataset used to identify library antibodies with properties

similar  to  clinical  mAbs  contained  discontinued  antibodies.  There  are  many  reasons  why  an

antibody could fail in clinical trials. Some of these are intrinsic to the sequence (immunogenicity,

developability), while others are target-specific (binding affinity, nature of the epitope, on- or off-

target side-effects, etc.) [1, 9, 50]. However, given the differences observed above, we considered

it worthwhile to attempt to train a predictor that might be able to identify drug-like antibodies that



are likely to succeed in the clinic. We assembled a dataset of the VH and VL amino acid sequences

for  115 approved and 150 discontinued antibodies from the TheraSabDab [3]  (Supplementary

Table 5).

Unlike  the  comparison  of  human  clinical  mAbs  and  library  antibodies,  which  had  statistical

differences in their physicochemical properties (Table 1), there were no statistical differences in

any of the basic physicochemical properties between approved and discontinued antibodies using

an unpaired t-test. This included the G score [51] used as a method for predicting immunogenicity

(Table 2).  The largest quantitative difference was that  the discontinued antibodies had a lower

mean length for the CDR-H3 loop (Supplementary Table 6). The lack of statistical differences is

perhaps not surprising given that both approved and discontinued antibodies will almost certainly

have undergone a developability assessment and possibly optimisation before entering clinical

trials. It was also seen that the approved and discontinued groups had similar proportions of VH

and VL V-gene germline pairings (Supplementary Figure S2).

As before, the VH and VL sequences for each antibody were padded and aligned using the Chothia

numbering scheme and the sequences were then encoded with a selection of  general  protein

(ESM [39]) and antibody-specific (AntiBERTy [45], AbLang [43], Sapiens [44]) protein language

models. The encodings of the paired VH and VL sequences were concatenated and treated as a

single set of data points per antibody. The encoded antibody sequences were used to train a

selection of 15 supervised machine learning classifiers (see the Methods and Supplementary File:

Supplementary  ML.pdf).  Models  were  trained  with  ten-fold  cross  validation  (CV)  and  model

performance was evaluated using the mean Matthews’ Correlation Coefficient (MCC) [52] of the

predictions of the test split of each fold. F-regression was used as a method of feature selection, by

selecting  the  k features  most  correlated  with  the  labels  where  k was  set  to

[1,10,50,100,500,1000,2500,5000,10000].

Generally performance across all classifiers was good (Supplementary Tables 7–10), but it was

seen that the overall  best performance was obtained for the AntiBERTy encodings, particularly

when using F-regression for feature selection with k set to 2500. The top performing models were

the  Linear  Support  Vector  Machine  classifier  (LinearSVC;  MCC=0.8±0.08),  Ridge  Classifier

(MCC=0.78±0.12)  and  Logistic  regression  (MCC=0.80±0.1)  (See Figure 4).  All  were  evaluated

using a standard classification threshold of 0.5. The LinearSVC model was selected as the best

model with a mean sensitivity of 0.86±0.10 and specificity of 0.93±0.05 across the 10 CV splits. In

an  attempt  to  improve  the  specificity  further,  this  model  was  also  assessed  using  a  higher

prediction threshold of 0.8. As expected, this resulted in a loss in sensitivity and an increase in

specificity  (Sn=0.57±0.17,  Sp=0.99±0.03).  This  was  accompanied  by  a  decreased,  but  still

respectable, MCC (0.64±0.11). See Table 3 and Supplementary Figure S3 which shows confusion

matrices for the raw outputs of this model at both probabilities.



The location of the majority of selected features in the VH or VL sequences was then identified.

Intuitively, it was expected that CDR-H3 would contain a high proportion of features, but this was

not the case. Instead, a region in Framework 3 of the VL chain had a high concentration of selected

features,  indicating that  this  region is  highly  important  in  how all  the models  have learned to

distinguish these groups (Figure 5).

However,  when  a  ‘held  back’ dataset  of  therapeutics  which  have  been  approved  (n=10)  and

discontinued  (n=11)  since  the  original  access  of  TheraSabDab  (Supplementary  Table 11),  the

predictive score was found to be MCC=0.14 using a prediction threshold of 0.5, but this increased

to  MCC=0.51  with  the  higher  prediction  threshold  was  of  0.8  (Supplementary  Figure S4a).  A

summary of results for the cross-validation and independent test sets is shown in Table 3. On the

independent  test  set,  the  default  prediction  threshold  results  in  a  reasonable  sensitivity  and

specificity as a result of numerous false positives; increasing the threshold to 0.8 improves the

specificity accompanied by a small  decrease in sensitivity resulting in a much improved MCC.

Supplementary  Figure S4b  provides  confusion  matrices,  MCC,  sensitivity  and  specificity  at

prediction thresholds between 0.5 and 0.9.

It  was  surprising  that  such  good  performance  was  achieved  using  basic  predictive  models.

Because  it  was  previously  shown that  approved  and  discontinued  antibodies  did  not  show a

statistically significant difference in features including isoelectric point, thermostability and CDR-H3

length (Table 2), it could be that other properties, such as immunogenicity [25], V-region germline

family  pairing  or  ability  to  access  their  targets  are  responsible  for  this  ability  to  discriminate

between these groups [45].

2.4 Assembling the pipeline to optimize performance and offer 
additional triaging.
The kernel PCA model (γ = 500) shown to separate library antibodies which are positioned close to

clinical mAbs, and the LinearSVC model using 2500 features shown to separate approved and

discontinued antibodies using the AntiBERTy language model encodings, were used to build a

pipeline  capable  of  selecting  developable  antibodies  from an  input  library.  The  encoding  only

needs  to  take  place  once  and  can  be  carried  forward  between  the  two  layers  of  models:

unsupervised and supervised, respectively.

The  complete  pipeline  attempts  first  to  remove  antibodies  with  obvious  developability  issues

through physicochemical properties using Z-scores taken from the values of the approved antibody

dataset (‘Physicochemical Filtering’ as given in Table 1, default Z=2); this saves computational time

in numbering and encoding antibodies with the language model, as well as producing a better

quality  output.  Antibodies  with  features  typical  of  clinical  mAbs  are  then  selected  from  the

unsupervised clustering of encoded antibodies using the ellipse function (‘Layer 1’) and are then



classified according to whether they are likely to pass clinical trials (‘Layer 2’). A user may enter a

library of human antibodies and obtain entries from those that are most likely to be successful. A

schematic of the pipeline is shown in Figure 6 where triaging stringency may be altered at each

triaging step.

2.5 Testing on an example dataset demonstrates points of 
parameter tuning for optimized output
To  illustrate  the  application  of  our  pipeline,  a  library  of  10,382  paired  B-cell  receptor  (BCR)

sequences taken from six healthy blood donors [54] was used as an example test dataset.

After physicochemical triaging, ‘Layer 1’ filtering is performed by performing PCA on the test data

together with our ‘library’ antibodies from OAS and the previously used clinical dataset. The Z-

score cutoffs are then calculated from the clinical dataset and the ellipse is generated and used to

select antibodies from the test dataset.

Using decreasing Z-scores for the physicochemical triaging of the sequences reduced the number

of antibodies entering ‘Layer 1’ (Table 4 and Supplementary Table 11). Similarly, decreasing the Z-

score of the ellipse function in ‘Layer 1’ generally reduces the number of sequences taken forward

to ‘Layer 2’ (Figure 7). However, since the clustering is performed and the ellipse is recalculated for

each  dataset  there  is  some variation  and,  in  one  case  (Table 4,  no  physicochemical  filtering,

‘Layer 1’, Z-score= 1.0), there is a small rise in the number of antibodies compared with Z-score=

2.0. Increasing the prediction threshold used in ‘Layer 2’ also reduces the final number of selected

antibodies.

As a comparison for the quality of antibodies output by the model, we checked the TAP score [31]

for each antibody from the test BCR library. The TAP score is a developability score where an

antibody with values for selected physicochemical properties that are seen within the clinical mAb

dataset are given a perfect score of 0, and antibodies with increasing numbers of ‘red flags’ where

the values are at the extremes of, or outside, the observed ranges are given negative scores. This

is an indicator of developability, not whether an antibody is likely to be approved. It should be noted

that this is a very different approach from our unsupervised machine learning: TAP relies solely on

calculated or predicted physicochemical properties, while we use a subset of these properties only

for  a preliminary screen before using a clustering in  high dimensional  space obtained from a

protein language model.

The median TAP score for antibodies in the Test BCR library was 0, which means that more than

half of these antibodies were predicted to have no developability red flags. However, the minimum

TAP score observed from the library was -110 indicating there are antibodies in the library with

many developability red flags. From the data in Table 4, it is clear that setting the physicochemical



property filtering (PCF) in our approach to a more stringent Z-score (e.g. Z=0.5) had the major

effect in removing antibodies with the most negative TAP scores from the output. Indeed with no

PCF, neither the ‘Layer 1’ nor ‘Layer 2’ filtering removed the antibodies with TAP = -110. Similarly,

as the ‘Layer 1’ stringency was increased, there was very little effect on the minimum, or the mean,

TAP score. This is, perhaps, not surprising since the physicochemical properties on which this

preliminary  filtering  is  performed  are  somewhat  similar  to  those  exploited  by  the  TAP score.

However, the number of negative TAP scores does decrease as the ‘Layer 1’ filtering becomes

more stringent (Table 4).

Again, because of the recalculation of the Z-scores and ellipse, there is one case in which the

mean TAP score does not steadily progress closer to zero as the ‘Layer 1’ stringency is increased

(Table 4, physicochemical filtering, Z-score=0.5).

It is also interesting to observe that, comparing the output of ‘Layer 1’ and ‘Layer 2’, the minimum

and mean TAP scores  improve.  Given  that  ‘Layer 2  is  predicting  clinical  success  rather  than

developability, there is no reason to expect that this would be the case. Indeed, the percentage of

antibodies  with  negative  TAP scores  retained  after  ‘Layer 2’ is  larger  than  that  after  ‘Layer 1’

indicating that ‘Layer 2’ filtering is indeed detecting something different from developability. 

3 Discussion
We have demonstrated the ability to triage library antibodies to find those with properties similar to

currently available therapeutic mAbs. This has been achieved through a combination of preliminary

filtering using physicochemical properties (to remove clearly outlying mAbs), with unsupervised

and  supervised  machine  learning.  This  demonstrates  a  useful  tool  in  monoclonal  antibody

therapeutic discovery that may be applied to new and pre-existing paired human antibody libraries

to  identify  potential  clinical  candidates  with  potential  to  pass  clinical  trials  in  order  to  avoid

expensive late stage failures. Parameters of the pipeline at each step may be adjusted such that

increased or reduced stringency filtering can produce a smaller (but more likely to be successful)

or larger selection of antibodies. This pipeline can be used to identify antibodies with properties of

therapeutic  mAbs  from  large  libraries  [55,  56],  to  screen  antibodies  from  transgenic  animals

following immunizations [57], or from human patients recovering from a condition of interest [5].

Using the pipeline in these contexts reduces the experimental work in finding an antibody which

has properties suitable for use in the clinic [27].

This basic schematic for our pipeline allows for further optional triaging to be added at any point to

give  additional  layers  of  stringency.  The  advantage  of  using  these  steps  is  a  vastly  reduced

computation time. On an AU5000 GPU used in this study, the AntiBERTy encoding takes 0.06

seconds  per  VH and  VL pair,  making  it  suitable  for  the  high-throughput  analysis  of  libraries

(compared with the 30 seconds required per antibody for the TAP Score web server [31]). While



the protein language models may be doing so implicitly, using additional features also opens up the

possibility of using other explicit features including screening for immunogenicity [50] and known

sequence liabilities such as post-translation modification sites [55, 58] and hydrophobic patches

[24].

Direct comparisons of the performance of our method with the TAP score are not really possible.

TAP relies on the distribution of a number of calculated and predicted physicochemical properties,

some  of  which  rely  on  a  (predicted)  structure  of  the  antibody.  Predicted  properties  can  be

compared with available experimental data. We only use physicochemical properties, calculated

solely from sequence, as a preliminary screen to remove obvious outliers. The machine learning

stages  are  based  on  a  protein  language  model  encoding  that  projects  information  (including

implied structural features) into a high-dimensional space which is then reduced to a 2-dimensional

space in which clinical antibodies are seen to cluster. Consequently, we do not directly predict

properties related to developability  and comparisons with published experimental  data are not

possible.

It is also worth noting that our approach is not simply suggesting that if the sequences are more

similar to those of clinical-stage antibodies, they should have better developability. If that were the

case, we could simply use a BLAST search. Rather, we exploit the encoding from the antibody-

specific protein language model, AntiBERTy and it is well established that protein language model

encoding of sequences relates a sequence to structural and lineage information on which it has

been trained and thus captures other key information. These encodings are highly sensitive and

can even predict the effect of single amino acid changes [71]. We have identified a 2D projection of

the  AntiBERTy  encoding  that  clusters  the  clinical-stage  antibodies  and  consequently  we  are

looking at similarity of the protein language model encodings in those two principal components

rather than sequence similarity per se.

Because human clinical antibodies clustered so closely in the kernel PCA, they must have similar

features which have been encoded and recognized by the language model. The fact the clinical

antibodies cluster near the origin suggests that they are developable largely because they are

‘ordinary’  antibodies  which  innately  satisfy  the  required  conditions.  It  is  entirely  possible  that

antibodies  with  very  different  properties  could  have  therapeutic  potential,  but  ultimately  these

would be higher-risk and consequently it  is generally better to allow false negatives than false

positives.

It is interesting to note that, using the TAP score, more than 25% of fully-human clinical-stage

antibodies exhibit negative TAP scores. Our approach  clusters all the clinical antibodies and the

ellipse function (with default parameters) will capture all of these, including those that have TAP

‘red flags’. In other words, if input antibodies are found to be located within the same region of the



projection of the high-dimensional encoding, they are likely to have sufficiently good developability.

We calculated the TAP scores for the 133 human clinical-stage antibodies and found that, while

~74% have a TAP score of zero (indicating no developability issues), the remainder have negative

TAP scores as low as -30 (See Supplementary Figure S5).

While the unsupervised model (‘Layer 1’) groups together both approved and discontinued clinical

antibodies, when these two groups are studied in a supervised context (‘Layer 2’), it is possible to

recognize  differences  between  them.  What  can  be  concluded  from this  is  that  there  are  still

features that separate them which are important for successfully completing clinical trials, and that

the light chain Framework 3 seems to have a large contribution to these features. A drug may be

discontinued from trials for efficacy reasons relating to bioavailability or binding to the target, safety

reasons  relating  to  the  antigen  or  antibody  (including  immunogenicity)  as  well  as  marketing

reasons [1, 9]. Since we showed that there are no statistical differences between the approved and

discontinued groups for thermostability, pI or CDR-H3 properties, it is possible that the model is

selecting features related to immunogenicity, or VH/VL germline gene pairing which may be related

to  stability  [59].  The  latter  option  could  then  be  related  to  biases  seen  in  the  approved  and

discontinued datasets perpetuated by the lead candidate selection processes, but then, it has also

been seen that the approved and discontinued dataset have similar proportions of VH/VL germline

gene pairing,  indicating other  factors are being recognized in  this  region which are related to

clinical trial success.

4 Conclusion
In conclusion, this work has demonstrated the ability to triage a library of antibodies to identify

those with developability features similar to approved mAb therapeutics using language model

encoding and applying them to both unsupervised and supervised machine learning. Furthermore,

we demonstrate the ability to fine-tune the output in terms of quality by adjusting the thresholds of

the models used to obtain the output. These tools aim to make use of previously curated and future

antibody datasets to triage large datasets enabling faster and cheaper identification of potential

lead candidates.

5 Methods

5.1 Data Collection

5.1.1 Human clinical-stage mAbs
Paired VH and VL sequences of therapeutic monoclonal antibodies (n=801) were downloaded from

the  October  2021  release  of  TheraSabDab  [3].  Therapeutics  marked  as  ‘Whole  mAb’  were

selected  and  identified  as  being  fully  human  using  the  ‘-umab’  suffix  excluding  instances  of

‘-zumab’ (humanized).  Each  therapeutic  was  checked  for  its  source  using  the  literature.  This



resulted in a dataset of 143 antibodies: approved mAbs (n=31); discontinued mAbs (n=77) and in

trials (n=35) (Supplementary Table 1). A further independent test dataset of human-derived clinical

mAbs was acquired (n=203) using the 2016 naming convention in which the source infix was

removed  from  the  name  and  the  2022  naming  convention  using  ‘-tug’  for  unmodified  whole

immunoglobulins and ‘-bart’ for whole immunoglobulins with engineered amino acid changes in the

constant domains [49] (Supplementary Table 4).

5.1.2 Library antibodies from OAS
The Observed Antibody Space database [18] was accessed in January 2022 and 34 libraries were

downloaded totalling 88,274 paired sequences. 10,000 antibodies were selected randomly in order

to create a training set for unsupervised learning (Supplementary Table 2).

5.1.3 Approved and discontinued mAbs
Clinical mAbs were obtained from the October 2021 release of the TheraSabDab database [3]. The

VH and VL sequences of 115 approved antibody drugs and 156 discontinued drugs were collected.

Seven drugs were excluded from the discontinued dataset as they were found to be discontinued

for reasons not related to efficacy or safety. Edrecolomab was also moved from the approved

dataset and the discontinued dataset, because it was later withdrawn for efficacy reasons [60]. The

result  of  this  is  a  dataset  of  115  approved  and  150  discontinued  antibodies  (Supplementary

Table 5).  Excluded  sequences  and  reasons  for  their  exclusion  are  found  in  Supplementary

Table 12.  A held  back  dataset  of  21  therapeutics  was  taken  from TheraSabDab  accessed  in

October 2023 and not included in the original dataset (Supplementary Table 11).

5.1.4 Test BCR Dataset
The Test  B  cell  receptor  (BCR)  sequence dataset  [61]  used to  demonstrate  the  pipeline  was

downloaded from dx.doi.org/10.5281/zenodo.5146019. This dataset was obtained from six healthy

blood donors who had their B cells isolated and FACS sorted by developmental stage. Transcripts

from each individual cell were bar-coded making VH/VL pairing possible. Antibody VH and VL pairs

were taken from B cells which shared the same bar-code where both an IGH and IGλ or IGκ chain

was present. In cases where both IGλ and IGκ chains were present, the chain with the highest

count number was taken as the VL chain pair. No filtering based on the type or BCR developmental

stage  was  performed.  Individual  amino  acid  sequences  for  frameworks  and  CDR loops  were

concatenated to give the full antibody variable domain sequence. In total, 10,382 paired antibodies

were extracted.

5.2 Encoding H and L sequences with antibody language models
VH and VL sequences were numbered according to the Chothia scheme [62] using AbNum [53]

(www.bioinf.org.uk/abs/abnum/), where missing residues in the numbering scheme sequence were

padded with characters dependent on which protein language model was being used, to align all

http://www.bioinf.org.uk/abs/abnum/
https://dx.doi.org/10.5281/zenodo.5146019


sequences making VH sequences 132 residues long and VL sequences 122 residues long. Details

of sequence encodings can be found in Table 5.

5.3 Supervised Machine Learning
Supervised learning was performed with SciKitLearn using 15 classifiers [63]  given in Table 6.

Descriptions  of  each  classifier  used  and  details  can  be  found  in  Supplementary  File:

Supplementary_ML.pdf.

F-regression is a method of feature reduction where the k most informative features are kept as

input to the model. This is done by calculating the cross-correlation of each data point and the label

for all features, which is converted to an F-score, then to a p-value and ranked [64]. F-regression

was implemented through the module sklearn.feature_selection.SelectKBest using the

Python  module  sklearn.feature_selection.f_regression as  the  score  function  and

variable numbers for k were substituted [1,10,50,100,500,1000,2500,5000,10000].

Once the F-regression was implemented on the encoded dataset, it was then split into training and

test sets using sklearn.model_selection.train_test_split where training portions were

used to train the models using ten-fold cross-validation.

Model performance was measured using the Matthews’ Correlation Coefficient (MCC) [52], which

gives a  score between -1  (perfect  inverse prediction)  and 1 (perfect  prediction),  with  0  being

random chance. Mean MCC and standard deviation for prediction performance over the ten folds

were reported.

5.4 Unsupervised Machine Learning
PCA  was  used  as  a  method  of  dimensionality  reduction  and  implemented  through

sklearn.decomposition.PCA.  Non-linear  PCA  [46]  was  implemented  through

sklearn.decomposition.KernelPCA using  kernel  functions  ‘rbf’,  ‘cosine’ and  ‘poly’ and  2

principal components. At first the coefficient of the kernel (γ) was set to the default value of  1/k

where k is the number of features. Once rbf was selected as the most suitable method, differing

values for γ were tested [10, 50, 100, 500, 1000]. t-distributed Stochastic Neighbour Embedding (t-

SNE) [47] was implemented through  sklearn.manifold.TSNE with 2 components where the

learning rate was set to 10, and the perplexity set to 1000. Uniform manifold approximation and

projection (UMAP) [48] was implemented through  sklearn.manifold.UMAP with the learning

rate set to 1 and the nearest neighbours set to 100.

5.5 Ellipse Function
The ellipse function takes in the points of the two extremes on the major axis (x1, y1) and (x2, y2)

as well as a value for  h (the height of the minor axis). The major axis is taken as the principal



component where clinical mAbs have the largest distribution, and the selected points are given as

the points on the distribution closest to a given Z-score in that distribution. The value of h is given

as the distance between the two equivalent points on the minor axis. The method for producing the

ellipse works as follows:

 Calculate the major and minor radii of the ellipse (a and b respectively). The major radius is

calculated from the two given points (Equation 1) and the minor radius is calculated as half

the value given for h, where Δx is the difference in x values and Δy is the difference in y

values between the two extreme points on the major axis.

a=√Δ x2+Δ y2
2

, b=h
2

(1)

 Use the parametric equation of an ellipse to generate the ellipse over 100 equally spaced

points between 0 and 2π assuming it is centred at the origin (Equation 2). For a given point

on the ellipse:

x=acos (θ ) , y=bsin (θ ) (2)

where  a is  the  major  axis  radius,  b is  the  minor  axis  radius  and  θ  is  a  given  angle

between 0 and 2π.

 Calculate the angle between given points to obtain an angle of rotation using the Python

Numpy arctan2 function [65] for Δy and Δx.

 Calculate a rotation matrix (R) based on the angle of rotation:

R=[ [cos (θ ) ,−sin (θ ) ] , [sin (θ ) ,cos (θ ) ]] (3)

where θ is the angle of rotation.

 Apply the rotation matrix R, to the ellipse.

 Calculate the midpoint of the two given points:

x=
x1+x2
2

, y=
y1+ y2
2

(4)

 Translate the ellipse to the midpoint.



 For each point, check if its  x and  y coordinates are inside the ellipse using the Polygon

function from the Python ‘Shapely’ module.

5.6 Calculating Physicochemical Properties
Physicochemical properties were calculated as described below and compared between groups

using the two-tailed unpaired Mann-Whitney U-test [66].

5.6.1 Identifying CDR-H3 Loops
The Complimentarity Determining Region loop three of the VH domain (CDR-H3) has frequently

been observed to have the largest contribution to antibody binding affinity because it is the most

diverse  region  between  sequences,  overlapping  the  Variable,  Diversity  and  Junction  gene

segments [42, 67]. CDR-H3 regions were identified using the AbNum software [53] and applying

the Kabat/Chothia/Martin definition (H95-H102). Sequences with more than two cysteine residues

were excluded as additional cysteines are a known risk factor for aggregation [68].

5.6.2 Thermostability
Gibbs  Free  Energy  (ΔG)  of  unfolding  was  predicted  for  each  antibody  sequence  using  the

Oobatake method [40] with experimental values of ΔH and ΔS taken from the original paper. mAbs

with  negative  ΔG of  unfolding  values  were  considered  unstable  and  associated  with  poor

developability.  This  was  calculated  for  the  VH and  VL chains,  as  well  as  for  both  chains

concatenated together using the ‘ssbio’ Python module [69].

5.6.3 Isoelectric Point
The method of calculating Isoelectric Point (pI) was that used in the IPC software [41] which uses

experimentally obtained peptide pKa values from the EMBOSS database [70] substituted into a

rearranged Henderson-Hasselbach equation. The equations are iterated using different pH values,

starting at  6.5,  and the results  of  the termini  and each of  the charged residues are summed

together. If the sum is 0±0.01, the isoelectric point is reached. Otherwise, the iteration continues to

increase the pH if the summed net charge was positive or to decrease the pH if it was negative.

5.6.4 Immunogenicity (Humanness)
The G score [51], is a measure of antibody humanness based on similarity to germline families and

a  predictor  of  immunogenicity.  This  metric  was  calculated  using  the  online  tool

www.bioinf.org.uk/abs/gscore/ for VH and VL independently. The minimum score of these chains for

each antibody was taken and the mean for each of these sets of minima is presented.

http://www.bioinf.org.uk/abs/gscore/


5.6.5 V-region Germline Gene Identification
V-region Germline genes were identified using the in-house ‘Assign GermLine’ software (AGL;

github.com/AndrewCRMartin/agl  /  ). Where more than one germline gene has the same (highest)

sequence identity, AGL selects a gene using the logic that the germline family with the lowest

family number was likely to have been discovered first and therefore likely to be more numerous.

The same logic is applied to allelic variants and proximal genes are favoured over distal genes

ensuring that gene names are consistent.

5.7 TAP Scores
TAP scores were developed by Raybould  et  al.  [31]  to  compare an antibody with  the clinical

dataset using metrics related to developability, assigning ‘amber penalties’ to antibodies that fall in

the top and bottom 5% of the observed distribution, and ‘red flags’ to antibodies that fall outside the

distribution. TAP scores were calculated for 10,382 paired VH and VL nucleotide sequences from

the Test BCR dataset in batches of 500 using the IGX platform igx.bio/ in August 2023 using the

default penalty set. Details of statistics measured and penalties assigned can be found in Raybould

et al. [31].
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Figure 1 caption: Scatter plots of unsupervised machine learning models trained on clinical
(n=144)  and  library  (n=10,000)  paired  antibody  sequences  encoded  with  the  AntiBERTy
protein language model. Plots are colour coded by (a) clinical stage or (b) heavy chain V
region germline gene and light chain type (λ or κ)

Figure 1 Alt-text: Two columns of scatter plots, from top to bottom: PCA, Kernel PCA, t-SNE
and UMAP). The first column is colour-coded to demonstrate where clinical antibodies fit
within the human library antibodies and the second column shows the same plots but colour-
coded according to heavy chain V-region germline and whether the light chain is a Kappa or
Lambda germline. Together, the figures show that, except for Kernel PCA, the heavy and
light chain germline pairings have the main influence on the positioning of an antibody in the
scatterplot and therefore clinical antibodies are not clustered together, but also follow this
positioning. In the case of Kernel PCA, the clinical mAbs are positioned around the origin of
the PCA and are radially surrounded by library antibodies.



Figure 2 caption: Scatter plot of kernel PCA (kernel=‘rbf’, γ=500) clinical mAbs trained on
clinical (n=144), library (n=10,000) and a held-back test set of clinical (n=203) paired human
antibody sequences encoded with the AntiBERTy language model.

Figure 2 Alt-text: The scatter plot demonstrates that the held-back test set of more recently
named clinical  antibodies  are  also  positioned near  the  centre  of  the  plot,  alongside  the
clinical antibodies demonstrated in Figure 1.



Figure  3  caption: Percentages  of  OAS  (library)  and  a)  human  clinical  mAbs  of  any
developmental stage, or b) only those with market approval, captured by the ellipse function
drawn from the distribution of clinical mAbs. Z-scores denote how wide the distributions for
the major axis of ellipse may be drawn with ‘All’ representing a Z-score selected such that all
of the clinical (or approved, respectively) antibodies are captured.

Figure 3 Alt-text: Two bar charts of the proportion of library and clinical antibodies captured
by the ellipse function at different Z score cut-offs. The bar charts demonstrate that, as the Z-
score threshold is reduced, the proportion of both the OAS antibodies and the human clinical
or human approved antibodies retained is reduced. Using all human clinical antibodies, the
separation between clinical antibodies and OAS antibodies is relatively constant, although
the best separation is seen with a Z-score of 2.0. Using approved antibodies, the ‘All’ Z-score
gives the best separation between approved antibodies and OAS antibodies.



Figure 4 caption: Matthews’ Correlation Coefficient (MCC) and standard deviation from ten-fold cross validation of 15 binary machine learning predictors
classifying approved (n=115) and discontinued (n=150) therapeutic antibodies and encoded using four protein language models. 

Figure 4 Alt-text:  The MCC values and standard deviations are shown on bar charts. Increasing values of k are used for the F regression cut off [1, 10, 50, 100,
500, 1000, 2500, 5000, 10000] and results are given for each classifier. The four bar charts show the scores obtained by encoding the training data sequences
with different language models (top row: AntiBERTy; AbLang. Bottom row: Sapiens, ESM).
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Figure 5 caption: Locations of the top k features selected by F-regression from VH and VL

chains of approved and discontinued mAbs encoded with the AntiBERTy language model
[45]  where  k=2500.  CDR loops are highlighted in  red (CDR1),  Blue (CDR2)  and Yellow
(CDR3).

Figure 5 Alt-text: Two bar  charts  demonstrating the number  of  features given for  each
position across the amino acid sequence aligned using the Chothia numbering scheme for
the VH (left) and VL (right) sequences selected by the F regression model where k=2500. The
bar charts demonstrate that the majority of features are in the third framework region of the
light chain.



Figure 6 caption: Schematic  of  the antibody triaging pipeline.  The yellow box indicates
optional  physicochemical  feature  triaging  steps  calculating  CDR-H3 length  using  AbNum
[53]. Thermostability (ΔG of unfolding) is calculated using the Oobatake Method [40] and pI
using the IPC method [41].  The blue box indicates machine learning elements including
spacing and encoding, as well as ‘Layer 1’ triage which is based on the Kernel PCA model
for separating antibodies with similar properties to clinical mAbs from the repertoire. The
selection of antibodies to take forward is made using the ellipse function. ‘Layer 2’ is the
supervised LinearSVC model trained to distinguish approved and discontinued clinical mAbs.
‘*’  indicates  stages  where  stringency  can  be  adjusted  using  Z-score  thresholds,  or  the
prediction threshold in the case of ‘Layer 2’.

Figure 6 Alt-text: Schematic representation of  the pipeline using arrows to demonstrate
linear path of steps. From the input the arrow enters a large green box with three successive
smaller boxes labelled: CDR-H3 Triage*; Thermostability Triage* and pI Triage*. These boxes
have hashed borders. The arrow to the next box leaves the green box and enters a large
blue box with four smaller boxes labelled: Sequence Spacing; Sequence Encoding; Layer 1
Triage* and Layer 2 Triage*. The arrow then leads outside of the blue box to another box
labelled Output.



Figure 7 caption: Scatter plots of clinical (n=144) and library (n=2740) paired antibody sequences encoded with the AntiBERTy protein language model
and that have undergone dimensionality reduction using non-linear Principal Component Analysis with a radial basis kernel function (gamma=500).
Different Z-scores of the distribution of clinical antibodies along PC1 are used as the extremes of the major axis to draw the ellipse function.

Figure 7 Alt-text: Four scatter plots demonstrating how using Z-scores drawn along the distribution of clinical antibodies (pink, orange, yellow) affects
the size of the ellipse drawn to take test antibodies (purple) to the next steps of the pipeline. Each plot shows the size of the ellipse for different Z scores.
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Table 1: Means and standard deviation of sequence-calculated physicochemical properties
for  fully  human  mAb  therapeutics  (n=144)  and  repertoire  human  antibodies  from  OAS
(n=10,000, the ‘Himan Library Antinodies’).

Feature
Human Therapeutic
mAbs

Human Library
Antibodies

p-value

CDR-H3 Loop Length 12.1±6.65 15.0±10.54 0.00049

ΔG VH (kJ mol-1) 7614±3260 6583±3441 0.00014

ΔG VL (kJ mol-1) 1086±2381 796±2614 0.14

Concatenated VH/VL ΔG (kJ mol-1) 9248±3896 7944±4238 0.00015

Mean pI of VH/VL 7.9±1.30 7.8±1.24 0.025

Table 2: Means of sequence-calculated physicochemical properties for all market approved
and discontinued mAbs (including human, humanized, chimeric and murine).

Feature Approved Discontinued p-value

CDR-H3 Loop Length 13.4±4.25 10.7±3.36 0.17

VH ΔG (kJ mol-1) 7008±3806 7592±3424 0.35

VL ΔG (kJ mol-1) 2411±1351 2546±2675 0.33

Concatenated VH/VL (kJ mol-1) 8434±4855 1071±4094 0.49

Mean pI of VH/VL 8.3±1.18 7.9±1.21 0.30

Mean Minimum G score -1.0±1.22 -0.8±1.06 0.23

Details of the G score are given in Thullier et al. [51]

Table 3: Summary performance of the LinearSVC supervised machine learning predictor for
success in clinical trials.

Prediction Threshold Performance

MCC Sensitivity Specificity

Cross-validation 0.5 0.80±0.08 0.86±0.10 0.93±0.05

0.8 0.64±0.11 0.57±0.17 0.99±0.03

Independent 0.5 0.14 0.50 0.64

0.8 0.51 0.40 1.00



Table 4: Number of antibodies from the Test BCR library output from the triaging pipeline
given  different  parameters  of  physicochemical  filtering  and  ‘Layer 1’  thresholds.  For
comparison, the minimum and mean TAP scores are provided, together with the percentage
of negative TAP scores, after ‘Layer 1’ and ‘Layer 2’ shown separated by a ‘/’.

Layer 1 Filtering Z-Score
None 2.0 1.0 0.5

None PCF Only 10492 — — —
Layer 1 9875 8165 8186 6107
Layer 2 3587 2981 2978 2232
Min TAP Score -110 / -110 -110 / -110 -110 / -110 -110 / -110
Mean TAP Score -18.58 / -18.86 -18.52 / -18.91 -18.53 / -18.97 -18.28 / -18.83
% TAP Scores < 0 40.3 / 50.4 48.0 / 50.4 30.4 / 50.2 22.2 / 50.7

2.0 PCF Only 8045 — — —

Layer 1 7508 7333 5855 3753
Layer 2 2571 2514 1981 1272
Min TAP Score -110 / -110 -110 / -110 -110 / -110 -110 / -90
Mean TAP Score -18.07 / -18.40 -18.05 / -18.47 -18.12 / -18.50 -18.11 / -17.58
% TAP Scores < 0 44.2 / 47.1 44.1 / 47.2 43.9 / 46.8 19.7 / 47.4

1.0 PCF Only 2740 — — —

Layer 1 2359 2329 2056 1086
Layer 2 808 797 705 361
Min TAP Score -90 / -40 -90 / -40 -90 / -40 -90 / -40
Mean TAP Score -16.77 / -57 -16.78 / -16.43 -16.83 / -16.33 -16.99 / -16.23
% TAP Scores < 0 31.7 / 35.3 31.7 / 35.5 32.3 / 35.6 31.8 / 36.0

0.5 PCF Only 386 — — —

Layer 1 308 231 157 39
Layer 2 113 80 57 14
Min TAP Score -40 / -40 -40 / -40 -30 / -30 -20 / -20
Mean TAP Score -15.68 / -15.0 -15.25 / -5.38 -15.33 / -15.00 -11.0 / -12.5
% TAP Scores < 0 25.3 / 31.9 21.5 / 32.5 28.7 / 38.6 35.6 / 38.6
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Table 5: Details of language model encodings

Language Model Features (VH+VL) Padding Character Reference

AntiBERTy 130,048 ‘_’ [45]

AbLang 195,072 ‘*’ [18]

Sapiens 152,560 ‘*’ [44]

ESM (esm2 t6 8M UR50D) 82,560 ‘X’ [39]

Table  6:  Supervised  machine  learning  classifiers  used  in  classifying  approved  and
discontinued antibodies.

Classifier Acronym Implementation

Decision Tree sklearn.tree.DecisionTreeClassifier

Stochastic Gradient Descent Classifier SGDC sklearn.linear_model.SGDClassifier

Ridge Classifier sklearn.linear_model.RidgeClassifier

Ridge Classifier CV sklearn.linear_model.RidgeClassifierCV

AdaBoost Classifier sklearn.ensemble.GradientBoostingClassifier

Gradient Boost Classifier sklearn.ensemble.GradientBoostingClassifier

Bagging Classifier sklearn.ensemble.BaggingClassifier

Random Forest Classifier sklearn.ensemble.RandomForestClassifier

Calibrated Classifier sklearn.calibration.CalibratedClassifier

Gaussian Naive Bayes Classifier GaussianNB sklearn.naive_bayes.GaussianNB

Support Vector Machine SVC sklearn.svm.SVC

Linear Support Vector Machine Classifier LinearSVC sklearn.svm.LinearSVC

Logistic Regression Classifier sklearn.linear_model.LogisticRegression

Logistic Regression CV Classifier sklearn.linear_model.LogisticRegressionCV

Quadratic Discriminant Analysis Classifier QDA sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis
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