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Enhancing missense variant 
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Computational approaches for predicting the pathogenicity of genetic variants have advanced in 
recent years. These methods enable researchers to determine the possible clinical impact of rare and 
novel variants. Historically these prediction methods used hand-crafted features based on structural, 
evolutionary, or physiochemical properties of the variant. In this study we propose a novel framework 
that leverages the power of pre-trained protein language models to predict variant pathogenicity. 
We show that our approach VariPred (Variant impact Predictor) outperforms current state-of-the-art 
methods by using an end-to-end model that only requires the protein sequence as input. Using one of 
the best-performing protein language models (ESM-1b), we establish a robust classifier that requires 
no calculation of structural features or multiple sequence alignments. We compare the performance 
of VariPred with other representative models including 3Cnet, Polyphen-2, REVEL, MetaLR, FATHMM 
and ESM variant. VariPred performs as well as, or in most cases better than these other predictors 
using six variant impact prediction benchmarks despite requiring only sequence data and no pre-
processing of the data.

A large portion of genetic variation is represented by single nucleotide variants (SNVs). SNVs occur in both 
protein coding and non-coding regions, while protein-coding SNVs can be further divided into synonymous and 
non-synonymous (nsSNVs) types. Synonymous SNVs do not change the amino acid sequence of the resulting 
protein while non-synonymous SNVs (nsSNVs) do.

Missense mutations, in which a single amino acid is replaced by another, are the most common type of nsSNV 
(the others leading to truncation or extension). There is a long history of using physicochemical and evolutionary 
information to predict whether a given missense mutation is disease-causing1–3. Nonetheless it remains a major 
challenge to predict pathogenicity.

To tackle these challenges, many computational tools based on supervised machine learning techniques have 
been developed to predict the potential impact of variants. These compute deleterious scores based on dozens of 
biological properties of variants, such as evolutionary conservation3–5, biochemical properties of amino acids6,7, 
and structural features of proteins8,9.

However, typically only a subset of variants can be annotated with all the features. This is especially true for 
tools that require a protein structure. There are 200 million protein sequences in the UniProt databank dated 
12th Oct 2022 (see: https://​www.​ebi.​ac.​uk/​unipr​ot/​TrEMB​Lstats), but only 200,000 experimentally-determined 
protein 3D structures stored in the Protein Data Bank (see: https://​resea​rch.​rutge​rs.​edu/​news/​new-​colla​borat​
ion-​betwe​en-​rcsb-​prote​in-​data-​bank-​and-​amazon-​web-​servi​ces-​provi​des-​expan​ded). This indicates that only 
approximately one in a thousand proteins have a reliable, experimentally resolved structure. For example, a com-
monly used predictor, Missense3D, can only structurally annotate 1965 and 2134 variants out of 26,884 disease-
associated and 563,099 neutral variants, using structures from the PDB9. Even given the increase in structural 
coverage using predicted protein structures from AlphaFold210, the accuracy of AlphaFold2 in predicting the 
structure of proteins with shallow multiple sequence alignments (MSAs) or orphan proteins, is questionable11 
and structure-based predictors may need to be re-trained for different levels of predicted quality obtained from 
AlphaFold2.
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Traditional computational variant effect predictors, such as PolyPhen-2 (Polymorphism Phenotyping v2)6 
are some of the most popular tools for clinical researchers. PolyPhen-2 was trained on protein sequence align-
ments and exploits known or predicted protein three-dimensional structural information to predict the impact 
of nsSNPs on protein structure and function.

FATHMM (Functional Analysis Through Hidden Markov Models)12 took a somewhat different approach to 
previous predictors being trained using Hidden Markov Models, with a range of features including conservation 
and physicochemical properties, to predict the impact of genetic variations on protein function. It is capable of 
handling a wide range of variations, including those in non-coding regions and is therefore valuable to clinical 
researchers.

In addition to the aforementioned techniques, ensemble methods have also been developed for predicting 
the pathogenicity of missense variants. REVEL (The Rare Exome Variant Ensemble Learner) and MetaLR, which 
uses Logistic Regression (LR), stand out as two representative ensemble models that were considered the best in 
the Critical Assessment of Genome Interpretation (CAGI) competitions13. REVEL, an ensemble method aimed 
at predicting the pathogenicity of missense variants, combines scores from 13 distinct pathogenicity prediction 
tools. MetaLR was developed by integrating scores from 10 different tools.

In the latest genome interpretation assessment competition (CAGI-6), a novel predictor named 3Cnet was 
ranked top in the SickKids clinical genomes and transcriptomes panel (see: https://​www.​3bill​ion.​io/​blog/​3bill​ion-​
wins-​in-​cagi6-a-​global-​artif​icial-​intel​ligen​ce-​genome-​inter​preta​tion-​conte​st/). 3Cnet14 is a deep artificial neural 
network Long Short-Term Memory (LSTM)-based model, which utilises multiple protein features including 
MSAs, amino acid physicochemical properties, and other features such as motifs and active sites as the input14. 
As PolyPhen-2, FATHMM, REVEL, MetaLR and 3Cnet are all trained for predicting the clinical significance of 
missense variants, and 3Cnet has reported state-of-the-art performance in this field, we selected these as state-
of-the-art methods against which to benchmark our approach.

Most recent novel protein data-representation approaches take inspiration from language models that have 
yielded ground-breaking improvements in natural language processing (NLP). In particular, the Transformer 
neural network architecture15, can learn contextualised word representations from a large amount of unlabelled 
text data and has achieved state-of-the-art performance for several NLP tasks. In the life sciences, most protein 
language models (pLMs) use Transformer architectures which were developed for NLP, but were subsequently 
trained on protein sequences with the goal of deciphering the ‘natural language’ of proteins.

pLMs such as ProtT516, ESM-1b17, ESM-1v18 and ESM-219 have been trained on a large corpus of protein 
sequences with the objective of predicting masked amino acids given the context of the non-masked sequence. 
These pLMs are pre-trained using a masked language modelling objective. During the pre-training, 15% of 
residues were randomly masked out from the input sequences, and the model predicts which amino acid type 
is most likely to be present at each masked position.

This results in a learned feature representation called an ‘embedding’ for each residue position in the protein 
sequence. The embeddings of these sequence-based pre-trained models have been shown to encode useful bio-
physical information, such as residue conservation20 amino acid hydrophobicity, protein structure class16 and 
protein functional properties21.

Even though these models were pre-trained without using evolutionary information, it has been shown that 
the methods achieve a similar performance to MSA-based models for various tasks while also reducing the 
computational cost.

Recent studies have used experimental data to evaluate the performance of pLMs in predicting the functional 
effects of variants17,20,22,23. However, to date, only one study (‘ESM variant’) has used a pLM to predict the clinical 
significance of a mutation22. ‘ESM variant’ uses the ESM-1b pre-trained pLM without requiring any supervised 
training. Given that ESM-1b was trained to predict the likelihood of each amino-acid type at each position, it 
is possible to use these likelihoods as a proxy for how well tolerated an amino-acid change is likely to be at the 
mutation site. ‘ESM variant’ constructs a pathogenicity score for a given mutation by using the ESM-1b likeli-
hoods for the wildtype and mutant type amino acids at the mutated position (Fig. 1).

This study extends the research on pLMs by proposing a novel methodology and architecture. We conduct 
a comparative analysis of alternative pLM models including the recent ESM-1v and ESM-2 models which were 
trained on larger protein datasets. We compare performance of our model against two traditional machine 
learning-based models including Polyphen-2 and FATHMM, and two novel deep learning based-methods ‘ESM 
variant’ and 3Cnet using the ClinVar dataset. One downside of supervised machine learning models is that they 
can be prone to overfitting such that they can perform poorly with new sequences not seen during the training 
stage, and where the training data contains genes for which all variants have the same class label (benign/patho-
genic). A previous study identified this as the ‘Type 2 data circularity’ problem24. We investigate whether the 
predictors are prone to bias from Type 2 data circularity using two additional benchmarks: SwissvarFilteredMix 
and VaribenchSelectedPure.

Our model, VariPred, uses a novel twin-network pLM architecture combined with a trained classification 
module to achieve the highest classification performance on two variant classification benchmarks. The twin 
neural network framework (sometimes called a Siamese network) describes an approach where two compara-
ble inputs are each passed through the same network. In our case, we pass the mutant and wildtype sequences 
through the pLM to generate embeddings for each residue position. Subsequently, we concatenate the two embed-
dings for the wildtype and mutant type residues that occur at the mutation position. These paired embeddings are 
used as input features to a lightweight feed-forward classification module which is trained on the labelled data. 
As a result of the transformer network architecture and the pLM’s pre-training objective, contextual information 
from the entire sequence is incorporated into the per-residue embedding. At the same time, selecting only the 
embeddings for the residues at the mutation position allows the classification module to focus on information 
which is specific to the mutation site.

https://www.3billion.io/blog/3billion-wins-in-cagi6-a-global-artificial-intelligence-genome-interpretation-contest/
https://www.3billion.io/blog/3billion-wins-in-cagi6-a-global-artificial-intelligence-genome-interpretation-contest/
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Results
Comparing the performance of LLR, embeddings and LLR + embeddings
The ‘ESM variant’ method22 only uses the Log-likelihood ratio (LLR) feature derived from ESM-1b to predict the 
clinical significance of missense variants. Here we evaluate the performance for this task, using LLRs derived from 
two other pLMs: ESM-1v and ESM-2.

We first tested models using the ClinVar test set. For pLMs which only use the LLR for prediction, ‘ESM 
variant’ (using ESM-1b) has the best predictive performance, with a Matthews correlation coefficient (MCC) 
score of 0.600, followed by ESM-1v (0.562) and ESM-2 (0.430) (Fig. 2).

In addition to using the LLR threshold to differentiate pathogenic variants from benign, our VariPred predic-
tor uses a shallow Feed-forward Neural Network (FNN) trained on the pLM embeddings for the wildtype and 
mutant sequence. We observe that this approach significantly improves the performance of all protein language 
models. ESM1b remains the best performing model, with an MCC score of 0.746, followed by ESM-2 (0.734) 
and ESM1v (0.721) (Fig. 2).

When we combine the LLR together with the embeddings, the performance of all models improved further. 
ESM-1b still has the best performance with an MCC score of 0.751, ESM-2 scored 0.748, and ESM-1v achieved 

Figure 1.   Illustration of how to calculate the log-likelihood ratio (LLR) from ESM models. The input for the 
pLM is an amino-acid sequence while the output is the log-likelihood ratio calculated based on the probabilities 
of the wildtype amino acid and the mutant amino acid occurring at the given position. Note, the heatmap 
showing in this figure was artificially generated for demonstration purposes. Pr, Probability; wt148 = P, probability 
that the residue occurring at the 148th position in the input wildtype (wt) protein sequence is a Proline (P); 
mt148 = G, probability that the 148th residue was mutant type (mt) Glycine (G).

Figure 2.   Comparison between models under different testing situations. Comparison of the LLR and 
embedding features for three protein language models. The baseline is using ‘Only LLR’ to predict pathogenicity 
of variants; For ‘Only embeddings’ we used amino acid embeddings as input to a shallow Feed-forward neural 
network (FNN) to predict the pathogenicity of variants; ‘LLR + embeddings’ concatenates the LLR feature as 
the last column of the amino acid embedding matrix, and then performs variant classification by using this 
extended matrix as input to the FNN. LLR: Log-likelihood ratio.
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0.729 (Fig. 2). Therefore, in the following experiments to compare the performance with other tools, we chose 
ESM-1b as the feature extractor for our model, VariPred. We trained our model with both embeddings and 
LLRs as input.

Comparison between models using the ClinVar test set
To evaluate VariPred’s performance on clinical data, we compared the performance of VariPred with other tools 
on the ClinVar test set.

Comparing against other methods, VariPred has the best performance with an MCC of 0.714. 3Cnet is closest 
to matching the performance of VariPred with an MCC of 0.673, followed by ‘ESM variant’ (MCC = 0.649), two 
ensemble predictors REVEL and Meta-LR2 with MCC scores of 0.537 and 0.513, respectively, and PolyPhen-2 
(MCC = 0.521), while FATHMM has the lowest performance with an MCC of 0.379 (Fig. 3). In addition, VariPred 
only requires protein sequence information as input, while 3Cnet requires multiple features including MSAs, 
amino acid physicochemical properties, and protein features such as motifs or active sites.

We observed that on the ClinVar dataset, 3Cnet’s AUC-ROC is higher than that of VariPred, while its MCC 
is lower. This discrepancy might stem from the inherent differences in how these two metrics evaluate model 
performance. AUC-ROC is calculated as the area under the curve plotted with True Positive Rate (TPR) and 
False Positive Rate (FPR) at various thresholds. However, AUC-ROC does not consider the shape of the curve 
or the threshold used for classification. Rather it focuses on the model’s overall performance across all possible 
thresholds. Consequently, for imbalanced datasets, the ROC curve may provide an overly optimistic performance 
estimate. In contrast, MCC considers all four quadrants of the confusion matrix at a single threshold (as would 
be used in an actual predictor), making it a balanced metric even in cases of class distribution imbalance.

However, another reason could be that the default threshold for 3Cnet was not optimal for these datasets. We 
therefore assessed the effect of adjusting the 3Cnet threshold to improve performance and observed that when 
this was done there was no significant difference in the MCC values between VariPred and 3Cnet (with 3Cnet 
obtaining a slightly higher performance, see Supplementary).

In addition, to test whether the model’s performance is artificially inflated by simply learning and predicting 
the majority class label for certain genes we created an additional ‘balanced label’ subset of the ClinVar valida-
tion set (see “Methods”: “Additional ‘balanced-label’ test set”) based on the ClinVar validation set, ensuring an 
equal number of positive and negative variants for all genes. Results on this subset showed that both models had 
similar AUC-ROC (0.88), while VariPred has a much higher MCC (0.623) compared with that of 3CNet (0.567).

Adjusting for gene overlap in training and test sets
The common standard in the existing literature on supervised models for variant impact prediction is to allow 
the same gene/protein to occur in the training and test sets as long as there is no overlap in the variant. This is the 
approach taken in the 3Cnet paper. The justification is that a clinically useful model should be able to leverage 
information from homologous and identical proteins to infer the pathogenicity of previously unseen variants. To 
investigate whether VariPred’s prediction accuracy is inflated due to protein homology, we retrained the VariPred 
ESM-1b model on a new split of the ClinVar data and evaluated the performance on a non-redundant test set (no 
sequence identity above 30% across the train and test datasets). We find that the MCC changes from 0.75 to 0.65 
(ROC AUC 0.93 to 0.91) when changing from the original train-test split to the no-homology split. This gives a 
measure of the model’s expected performance when predicting on genes without any annotation in the training 
data. While we are unable to benchmark the other supervised models on the non-homology train/test split, as 

Figure 3.   Comparing the performance of pathogenicity predictors using the ClinVar validation set. (A) 
AUC-ROC curve plot for the seven predictors. (B) MCC score for the predictors being tested in this study. The 
error bars depict the 95% confidence interval for the MCC score, as computed from 10,000 bootstrap sampling 
iterations.
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this would require retraining the other models, we note that VariPred’s performance on the no-homology split 
is still better than the best unsupervised method.

Results for Type 2 data circularity test
We compared all predictors with two public benchmarks, the SwissvarFilteredMix and VaribenchSelectedPure 
test sets, to evaluate if any of the models are affected by the Type 2 data circularity problem.

In this evaluation, FATHMM has the highest accuracy in VaribenchSelectedPure, while having a much higher 
performance in VaribenchSelectedPure (MCC = 0.327) than SwissvarFilteredMix set (MCC = 0.183), which is 
consistent with previous research25 (Fig. 4). In addition, MetaLR’s performance in VaribenchSelectedPure, for 
which the MCC score equals 0.221, is higher than SwissvarFilteredMix set (MCC = 0.187). This suggests that 
traditional machine learning-based methods, FATHMM and MetaLR, are both affected by the Type 2 data 
circularity problem where the model is learning features of the gene and ignoring the specifics of the variant 
(see “Methods”: “Additional ‘balanced-label’ test set” for a more detailed explanation). In contrast, our model, 
VariPred, has the highest performance in SwissvarFilteredMix (MCC = 0.466) (Fig. 4), indicating that VariPred 
is not confounded by the Type 2 data circularity problem.

While PolyPhen-2 demonstrates comparable performance to 3Cnet using the SwissvarFilteredMix set, it is 
crucial to note that Swiss-Prot forms part of the training data for PolyPhen-2. Consequently, the observed MCC 
score of 0.291 for PolyPhen-2 applied to SwissvarFilteredMix may be inflated due to train/test overlap.

Among the three deep-learning-based tools, all predictors demonstrated superior performance on Swiss-
varFilteredMix as compared to VaribenchSelectedPure. Notably, 3Cnet exhibits the lowest MCC score among 
them, registering a value of 0.331.

Discussion
We tested three different pLMs (ESM-1b, ESM-1v, ESM-2) and showed that ESM-1b was the best predictor for 
pathogenicity of single-position missense variants (Fig. 2). Using the ClinVar test set, our VariPred predictor 
which combined LLR and residue embeddings generated by ESM-1b has the best performance achieving an MCC 
of 0.714 and AUC-ROC of 0.928 without using any additional biological features and not being confounded by 
Type 2 data circularity (Fig. 3).

In principle, since ESM-1v and ESM-2 were pre-trained using a much larger protein sequence dataset, they 
should have a broader view on the mutability landscape of proteins than ESM-1b. The ESM-1v and ESM-2 
authors state that both ESM-1v and ESM-2 are sufficient to conduct the missense mutation pathogenicity predic-
tion without any further training18,23. Nonetheless, we observed better performance using the ESM-1b model. 

Figure 4.   Type 2 data circularity problem test. Comparing the performance of pathogenicity predictors using 
the public test set, SwissvarFilteredMix and VaribenchSelectedPure. Predictors were all tested in the common 
datasets of both SwissvarFilteredMix and VaribenchSelectedPure. The error bars depict the 95% confidence 
interval for the MCC score, as computed from 10,000 bootstrap sampling iterations.
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We speculate that this may be a result of the ESM-1b pre-training dataset being more closely aligned with the 
relatively narrow set of (human only) proteins that are included in ClinVar.

Reports suggest that for predicting the functional (rather than clinical) effects of variants, which are in the 
form of a continuous scalar value, ESM-1v and ESM-2 have a better performance18,23. However, recent comments 
suggest that ESM-1b performs better in some other tasks, such as structure prediction26. In this study, we showed 
that ESM-1b outperforms two other state-of-the-art predictors in predicting the binary clinical significance of 
missense variants.

In the comparison between representative traditional machine learning-based methods (PolyPhen-2 and 
FATHMM), ensemble models incorporated with traditional machine learning methods (REVEL and MetaLR) 
and deep learning-based models (VariPred, 3Cnet and ‘ESM variant’) for the task of clinical variant impact 
detection, the accuracy of models based on deep learning models is far higher than that of models based on 
traditional machine learning methods (Fig. 3). The lowest MCC score in the deep learning model, ‘ESM vari-
ant’, is higher than the relatively high MCC score of REVEL in traditional machine learning methods by around 
30%, while supervised deep learning methods (VariPred and 3Cnet) out-perform the unsupervised learning 
method (‘ESM variant’).

In the Type-2 data circularity test, we noticed that traditional machine learning based models are prone to 
the bias from the Type-2 data circularity problem. FATHMM, which was not trained on Swiss-Prot dataset, 
has the highest accuracy in VaribenchSelectedPure (MCC = 0.327) compared with the SwissvarFilteredMix set 
(MCC = 0.071) while the ensemble model MetaLR also demonstrates a higher performance in VaribenchSelect-
edPure than SwissvarFilteredMix set, of which the MCC scores are 0.221 and 0.187, respectively (Fig. 4). Mean-
while, none of the deep learning-based methods have a better performance in the VaribenchSelectedPure set. In 
particular, our model, VariPred, has the highest performance in SwissvarFilteredMix (MCC = 0.466) but a lower 
performance in VaribenchSelectedPure (MCC = − 0.145) (Fig. 4), indicating that VariPred is not confounded by 
the Type 2 data circularity problem. This suggests that, compared with deep learning-based methods, traditional 
machine learning based predictors are more easily affected by the Type 2 data circularity problem where the 
model is learning features of the gene and ignoring the specifics of the variant.

From the test results on the ClinVar ‘balanced label’ subset, we found that VariPred is less susceptible than 
3Cnet to simply predicting the majority class label for genes that have been included in the training data. Accord-
ing to our evaluation on another balanced dataset, SwissvarFilteredMix, 3Cnet’s performance on either MCC or 
AUC-ROC was significantly behind VariPred (Figs. 4, 5). Thus VariPred is the top performing method in two 
out of three test sets (ClinVar-class-balanced and SwissVar) and is competitive on a third test set (ClinVar) where 
we observe no statistically significant difference between VariPred and 3Cnet (Fig. 5).

Preparing the input features for 3Cnet is a difficult task. 3Cnet relies on features based on 85 biophysical 
properties retrieved from the SNVBox database. However, not all variants can be mapped with features from 
SNVBox as it has not been updated since 2011, resulting in missing sequences and problems with changed 
RefSeq IDs. This may lead to uncertainty in the consistency between the retrieved feature and the data entry. 
Additionally, only the NP codes which are included in the provided transcript ID list can be transformed into 
a 3Cnet prediction dataset.

In comparison to other models, VariPred requires only the most fundamental information for each data entry: 
the wildtype protein sequence and mutation information including which residue is being mutated at which posi‑
tion in the wildtype sequence into which mutant amino acid. Without the need for further dataset preparation, 
such as MSA construction or feature retrieval, making predictions on a dataset of 5000 new variants take 30 min 
with a 12 GB GPU, such as the Nvidia GTX 1080Ti.

Figure 5.   AUC-ROC curve plot for VariPred and 3Cnet on SwissvarFilteredMix dataset.
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A key feature of VariPred, fine-tuned based on pLMs, is its ability to fit the pathogenicity data extremely well 
using only sequence data for training. When compared with 3Cnet, VariPred removes dependencies on MSAs 
and externally computed features, requiring only the protein sequence as input. Thus, while other prediction 
models directly exploit structural and/or evolutionary information, their performance in pathogenicity predic-
tion was not as good as that of large language models relying solely on sequence information. Our VariPred 
results appear to validate previous research suggesting that pLMs pre-trained on a vast array of sequences have 
implicitly learned the structural16 and evolutionary information20 of proteins.

We note that performance on the SwissvarFilteredMix and VaribenchSelectedPure test sets was lower than 
performance on ClinVar for all models, which is consistent with previous studies25. Comparing the SwissVarFil-
teredMix dataset with the latest ClinVar dataset (2022-12) we found that 17% of entries have an inconsistent label 
(e.g. ‘uncertain’ in SwissVarFilteredMix versus ‘positive’ in ClinVar) and 81% do not have a label in the ClinVar 
dataset, whilst 2% of variants have the opposite label. Meanwhile, VaribenchSelectedPure also has label discrep-
ancies when compared with ClinVar. Of the 69 variants shared between the ClinVar and VaribenchSelectedPure 
datasets, 22 have contradictory labels. The reason is not immediately clear, but both VaribenchSelectedPure and 
SwissVarFilteredMix are old datasets. As all models perform badly in these two datasets, we suspect that the 
labels of the same variants in these two tests may have been changed in ClinVar.

This could explain why the performance of all predictors drops in these two datasets, as the inconsistent data 
would reduce the evaluated prediction performance of the predictors. This could be a result of different criteria 
for labelling (e.g. how partial penetrance variants are classified) or labels changing owing to newly available 
evidence. We note that other authors have been critical of using the VariBenchSelectedPure dataset for bench-
marking. For example, quoting from Wang and Wei25: “It is useful to note that the performance of the tools on 
VaribenchSelectedPure cannot be compared directly because this dataset was biased and the labels of variants 
in this dataset were at least partially artificial. It was only constructed for testing whether a prediction method 
was confounded by type 2 circularity.”25.

Inconclusive and contradictory pathogenicity labels are an argument in favour of unsupervised methods such 
as ‘ESM variant’. Even though we observed lower performance when compared with supervised methods such 
as VariPred and 3Cnet, it is important to note that the unsupervised methods are not prone to bias introduced 
by training dataset selection and labelling issues.

VariPred is specifically trained for predicting pathogenicity rather than functionality. This distinction is 
crucial, with pathogenicity being a more downstream concern, while functionality deals with more upstream 
mechanisms. Consequently, our training prioritises pathogenicity data over functionality datasets. Nevertheless, 
we postulate that our research can be complemented by in vitro functional protein assays, including deep muta-
tional scanning experiments, which may provide additional insights into disease-causing variants. Additionally, 
our homology tests have demonstrated that when VariPred is retrained by training with sequence similarity level 
less than or equal to 30% compared to that in the test set, it still achieves remarkable performance on the test set 
(MCC = 0.645, AUC-ROC = 0.907). Therefore, we believe that a retrained VariPred can offer valuable insights 
about disease causing variants on a gene not previously encountered.

Several researchers have posited that variant predictors might yield enhanced accuracy for specific genes or 
diseases25,27. Thus, in the future, we will evaluate VariPred’s performance on specific genes associated with various 
diseases as well as differential pathogenicity prediction—i.e. predicting different pathogenic phenotypes caused 
by mutations in the same protein27.

Currently, VariPred only uses sequence information to predict pathogenicity. In future we will evaluate the 
effect of including structural information in the predictor. A similar strategy of predicting mutation effects 
using protein embeddings has been implemented for aiding engineering of enzymes by directed evolution and 
for aiding protein design28,29, but has not yet been explored in the prediction of the clinical significance of mis-
sense mutations. Incorporating both sequence and structural information is likely to improve VariPred’s ability 
to classify missense variants.

Applying a more biologically meaningful data augmentation strategy may add more diversity into the training 
set. Conservation information is one of the most powerful features for predicting protein stability and functional 
effects30. In the study of 3Cnet, the artificial pathogenic-like variants were generated simply by considering the 
amino acid frequency and the number of gaps. However, a good conservation scoring scheme depends on mul-
tiple components, of which the most important include amino acid frequency, residue similarity (biophysical 
properties), sequence similarity (considering sequence redundancy and MSA depth), the number of gaps in the 
MSA, and the concept of ‘compensated pathogenic mutations’ (CPDs), which refers to mutations occurring in 
different species that are tolerated because of compensating mutations31. Indeed, it may be possible to exploit the 
LLR output from ESM-1b to suggest compensatory mutations and use the final VariPred output to evaluate their 
effect. Therefore, in the future, it may be worth investigating whether such a combination of data augmentation 
and synthetic data strategies can further improve the performance of VariPred.

In summary, VariPred only requires the native and mutated sequence and, using protein language model 
encoding, is able to outperform state-of-the-art methods that use features including structural information and 
multiple sequence alignments.

Methods
Dataset preparation
To avoid having to retrain 3Cnet we opted to use the same train/test split as the 3Cnet authors. The only modifi-
cations that we made were to exclude the 3Cnet simulated data from our model’s training set and remove some 
variants from the test set which appear to have been inadvertently included by the 3Cnet authors in both the 
train and test sets.
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Training set
The training dataset used in 3Cnet consists of three parts: (1) clinical data stored in the clinical database ClinVar, 
(2) common missense variants retrieved from the population database GnomAD, and (3) a set of simulated 
pathogenic data generated by the 3Cnet authors. The simulated data are based on amino acid conservation deter-
mined from MSAs, built using sequences from the RefSeq database. We chose to exclude the simulated data from 
our training dataset and work with the subset of the 3Cnet training data sourced from ClinVar and GnomAD.

The ClinVar dataset used by 3Cnet was downloaded from the ClinVar database via the FTP link (version 
2020-4). In total, 72,470 curated missense variants were selected according to the criteria of known molecular 
consequences and reliable review status. Specifically, only variants with the GRCh37 assembly version and 
labelled with ‘missense variants’ were collected, and those with unreliable review status, containing strings with 
‘no assertion’, ‘Conflicting’, ‘no interpretation’, and ‘Uncertain’ were all excluded. Data labelled with ‘pathogenic’ 
or ‘likely pathogenic’ were all considered as pathogenic variants. Similarly, variants with any submission reported 
as either ‘benign’ or ‘likely benign’ were defined as neutral. After filtering out low-quality data, 72,470 variants 
(22,337 pathogenic and 50,133 benign) remained.

The GnomAD dataset prepared by the 3Cnet group (file downloaded using FTP: gnomad.exomes.r2.0.2.sites.
vcf.gz) consists of 60,614 exome-derived variants. These variants have a minor allele frequency (MAF) higher 
than 0.1% and each was filtered by requiring a ‘PASS’ annotation, which ensures the quality of the variant, i.e. high 
confidence genotypes. Since these variants are found in the genome of supposedly healthy people, they are typi-
cally regarded as benign variants32. However, even though the 3Cnet authors regard variants with a MAF ≥ 0.1% 
as neutral, we cannot exclude the possibility that some of these variants have undetected (or partial penetrance) 
pathogenic effects since a MAF of 1% is usually used in defining a ‘polymorphism’.

Each datapoint included in these three datasets was annotated with a specific RefSeq NP code (protein record 
identifier in the protein sequence database) and the mutant information in the HGVSp term by the 3Cnet group, 
e.g. NP_689699.2:p.Gly56Ser. For each RefSeq NP code, the corresponding curated wildtype protein sequence 
was also provided by the 3Cnet group. For each variant in the dataset, the input for the model consists of both 
wild-type and mutant sequences, target mutated position, wildtype amino acid and the mutant amino acid. 
The final output of the model is a binary label, where 0 indicates that the mutation is benign and 1 indicates 
pathogenic.

Test set
We noted that some variants (the same gene with the same mutation) were repeated between the 3Cnet train 
and test datasets. This problem arises from splitting the data based on variant information given in the HGVSp 
term. We found that some proteins annotated with different NP codes are in fact the same isoform, with the 
same wildtype protein sequence. To avoid having to retrain 3Cnet we chose to remove the 1767 duplicated vari-
ants from the ClinVar test set and a further 900 variants which were duplicated between the GnomAD training 
dataset and the ClinVar test set.

As a result of removing these duplicates, the processed training dataset consists of 72,466 variants from 
ClinVar and 59,018 variants from GnomAD. In total 17% of variants were labelled as pathogenic. The test set is 
comprised of data from ClinVar only and consists of 21,125 entries with 45% of variants labelled as pathogenic 
(Supplementary Table 1). Here, we ensure that the training and test sets do not have any variants which are the 
same.

When fetching pre-computed prediction results from FATHMM, PolyPhen-2, REVEL and MetaLR, we noted 
that some variants were not available. To ensure all methods were benchmarked with the same test set, we tested 
all predictors on the common test set, consisting of 12,853 variant datapoints in total.

Additional ‘balanced‑label’ test set
In the comparative analysis of performance metrics, it is observed that the AUC-ROC score of 3Cnet surpasses 
that of VariPred, whereas the MCC score of 3Cnet is inferior. This divergence in performance metrics might be 
attributed to a specific characteristic of the dataset used in the full set. Notably, certain genes within this dataset 
exclusively comprise variants of a singular type, exclusively classified as either benign or pathogenic. This situa-
tion suggests that the predictive model may predominantly assimilate information at the gene level rather than 
the variant level. In essence, the model tends to predict all variants of a particular protein as either benign or 
pathogenic. This phenomenon aligns with what is known as a type 2 data circularity problem.

To test whether model performance was artificially inflated by learning to predict the majority class for genes 
with imbalanced class labels, an additional subset was constructed, termed the ‘balanced-label’ subset, derived 
from the Clinvar validation set. This subset was constructed to include only those genes that exhibit both classes 
of variants and a strict balance was enforced in the number of each label for these genes. To illustrate, genes that 
solely consisted of variants labelled as 0 or as 1 were excluded from the test set. In the genes that remained, an 
equilibrium was ensured by taking a random subsample from the majority class of the same size as the minority 
class.

Testing for Type 2 data circularity bias
Grimm et al.24 point out that effective benchmarking of clinical variant prediction can be confounded by circu-
larity arising from overlap between the train and test sets. Type 1 data circularity arises when the same variant 
is included in the train and test set. Type 2 circularity arises from the same genes being included in the train 
and test set, even where the individual mutations are distinct. Type 2 data circularity bias is a particular prob-
lem where the data includes genes where labels are imbalanced towards one class. This scenario can give rise 
to predictors that ignore the specific details of the mutation merely recognising genes which are oversampled 
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as pathogenic or benign in the training data. In order to assess the models’ propensity to overfit to genes in this 
way, we followed the approach of Grimm et al. and tested predictors using the SwissvarFilteredMix dataset and 
the VaribenchSelectedPure public benchmark. These datasets are used together to test whether performance is 
confounded by type 2 data circularity.

The SwissvarFilteredMix dataset consists of proteins with at least one type of label from each class. By con-
trast, in the VaribenchSelectedPure dataset, each protein only has one type of variant class, either all benign or 
all pathogenic. If a model learns to predict based on characteristics of the gene and ignores the specifics of the 
variant, then it will typically show inflated performance on the VaribenchSelectedPure dataset while showing low 
performance on SwissvarFilteredMix. It is important to emphasise that the performance of tools on Varibench-
SelectedPure should not be directly compared, as this dataset has inherent biases and its variant labels are, to 
some extent, artificially generated. The primary purpose of creating this dataset was to test whether a prediction 
method could be confounded by type 2 circularity. The 3Cnet and VariPred training set includes 67% of the genes 
that were in the VaribenchSelectedPure test set, and therefore have the type 2 circularity that we are trying to test.

The VaribenchSelectedPure and SwissvarFilteredMix datasets contain information on chromosome num-
ber, base substitution position, reference nucleotide base, altered nucleotide base, Ensembl protein ID and the 
ground-truth label. Some sequences are not consistent with the mutation information, possibly because there 
has been a new isoform since the two benchmarks were generated in 2016. Therefore, we annotated NM codes 
(mRNA record identifiers in the Nucleotide database) for each variant using the latest version of the ANNO-
VAR software33, with the transcript-based annotation set for the RefSeq Gene (assembly version hg19; updated 
2020-08-17 at UCSC). We then retrieved the corresponding protein isoform sequences (wildtype sequences) 
using the Entrez.efetch module included in Biopython (version 1.80) with Python 3.9. Using the original protein 
isoform sequences and the corresponding variant information, we generated the mutant sequences for each 
variant. This gave a SwissvarFilteredMix test set with 1153 benign variants and 1023 pathogenic variants, and a 
VaribenchSelectedPure set with 3629 benign variants and 2122 pathogenic variants.

There are problems with 3Cnet in generating features for some variants from these two benchmark datasets. 
To predict a variant’s pathogenicity with 3Cnet requires three components: the HGVSp term including the NP 
code and the mutation information, the NP code corresponding to the wildtype sequence, and 85 biological fea-
tures retrieved from the SNVBox database34. However, this information is not recorded in the SNVBox database 
for some of the variants. Consequently, 3Cnet is not able to give a prediction for these variants. We therefore 
dropped these variants, leaving 1742 variants in the SwissvarFilteredMix and 5159 variants in VaribenchSelect-
edPure test sets for the evaluation of 3Cnet. We ensured that no variant was repeated between the train and test 
sets i.e. no type 1 circularity.

Moreover, owing to the absence of some human genes in both the precomputed datasets of PolyPhen-2 and 
FATHMM, we tested all tools using the common variants between SwissvarFilteredMix and VaribenchSelect-
edPure sets. Eventually, 1603 out of 2176 variants from SwissvarFilteredMix (865 benign vs. 738 pathogenic) 
and 1837 variants from the VaribenchSelectedPure set (1760 benign vs. 77 pathogenic) remained that could be 
tested across all predictors.

Feature extraction and model setup
In order to identify the most suitable pLM for differentiating pathogenic variants from benign, we tested the 
most widely used pre-trained models including ESM-1b, ESM-1v and ESM-2. ESM-2 has several versions with 
different parameter sizes, ranging from 8 × 106 to 15 × 109. According to a previous study, the performance of the 
model does not increase with model size, and models with 650 × 106 parameters appear to have the best ability to 
extract per-residue features23. Therefore, we chose ESM-2 with 650 × 106 parameters for our analyses.

Extract embeddings by pLMs
ESM-1b and ESM-1v are BERT-style encoder-based Transformers, which limit the input length to 1022 amino 
acids. ESM-2 does not have this sequence length limitation, but using longer sequences is computationally pro-
hibitive. Moreover, the Rotary Position Embedding strategy used in ESM-2 only considers the word embeddings 
and their neighbours, limiting any advantage of larger windows. Therefore, we designed a sequence truncation 
strategy which is consistent with such encoding methods and limits the maximum length to 1022 in all 3 models.

The official ESM tokenizer package pads the length of shorter sequences to 1022 internally, but transforms the 
length back to the true sequence length during data processing. For sequences longer than 1022, if the mutation 
is within 1022 residues of either the N-terminus or the C-terminus, 1022 residues counting from the end were 
retained; if the mutation index occurs more than 1022 residues from both termini, 510 neighbours from the 
N-terminal side and 511 from the C-terminal side of the mutated residue were selected, resulting in sequences 
having 1022 residues.

Transformer-based pLMs provide features in two forms: the probability of each amino acid type occurring 
at each position in the sequence, and a dense vector-embedded representation of each position in the sequence. 
Owing to the self-attention mechanism of the Transformer architecture, the embedding can incorporate con-
textual information from the entire 1022 residue window. We followed a similar approach to ESM-Variant, and 
for each mutated position we extracted the log likelihood ratio (LLR) and the embedded representation of the 
wild-type and mutant type residue.

The LLR was calculated using the ESM likelihood of the mutant and wildtype amino acid at the target posi-
tion conditioned on the model receiving the wildtype sequence as input, using the formula shown in Fig. 1.

Amino acids which frequently occur at a target position, typically have a comparatively high likelihood. Thus, 
if the mutant type’s likelihood is significantly lower than the wild type, this serves as an indicator that the muta-
tion is problematic, while mutant residues with high likelihoods typically have similar physiochemical properties 
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and are therefore less likely to affect protein stability or function. The ‘ESM variant’ method22, which uses the LLR 
generated by ESM-1b to discriminate variant pathogenicity, suggested that an LLR threshold of − 7.5 is sufficient 
to detect pathogenic variants. Considering the potential variability of ’cross-points’ i.e. the overlap in distribu-
tions between two labels in the validation set, across different models and across different test sets, we optimised 
the performance of models via calculating the specific cross-points for the three models: ESM-2, ESM-1v, and 
ESM-1b, with respective values of − 7.513, − 6.660 and −8.210—on the training set utilised in our study (Fig. 6). 
The ESM model with the best performance will then serve as the feature extractor for VariPred. Each position in 
the sequence is represented by embeddings of a 1280-word dimension, extracted from the chosen ESM model.

The schema of data processing and model generation is shown in Fig. 7. To obtain the embeddings of each 
sequence pair (wildtype and mutant protein sequences), all sequence pairs were fed into the pLM. For example, 
if a wildtype sequence consists of 100 amino acids, two embedding matrices (one for amino acids in the wildtype 
sequence, the other for amino acids in the mutant sequence) with dimensions 100 × 1280 would be generated 
(Fig. 7A).

We hypothesised that the embedding of the target amino acid at the mutation position would be the most 
informative. Therefore, we only took the embedding of the amino acid at the mutated position from both wildtype 
and mutant sequences. These two embeddings were then concatenated horizontally such that each data entry is 
represented as a vector with dimensions 1 × 2560. Feeding the training dataset (192,575 entries) into the ESM-1b 
pre-trained model will generate a wildtype-mutant concatenated amino acid embedding representation matrix 
with a size of (192,575 × 2560) (Fig. 7B). These embeddings are expected to capture fundamental biological 
features, related to protein function or structural stability.

To investigate whether combining LLR and embeddings would increase performance, we appended the 
LLR to the last column of the embedding matrix, which increased the dimension from 2560 to 2561 (Fig. 7C).

Figure 6.   The intersections of the two LLR distributions among three models. The LLR values obtained from 
ESM-2, ESM-1v, and ESM-1b were plotted as a kernel density estimation (KDE) distribution along with their 
corresponding true values. This visualization enables the differentiation between pathogenic and benign 
variants.
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Figure 7.   Schema of workflow for training VariPred. (A) In the first step, each wild-type protein sequence and 
the corresponding mutant protein sequence are fed into the pLM separately. The pLM generates a per-residue 
embedding for each amino acid. The output is the matrix of sequence embedding, with dimensions sequence 
length x embedding dimension. (B) Only the embeddings of the amino acids at the mutated position are used 
and joined giving an embedding dimension of 2560. The concatenated embeddings for each observation are 
combined to give an embedding matrix with dimensions dataset size ×2560. (C) The embedding matrix is fed 
as the input into a Feedforward Neural Network (FNN), and two probabilities are then output identifying if 
the given variant belongs to the pathogenic or benign group. Note that if the LLR feature is appended the input 
matrix is dataset size ×2561.
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Feed‑forward neural network
We created a classification module by including a shallow feed forward neural network (FNN) as the decoder/
classifier for the pLM. This was trained on the class labels without updating parameters in the pLM. During 
the hyperparameter tuning process, we tried increasing the depth of the FNN as well as trying multiple sets of 
learning rates and drop-out rates. The final FNN, which gave optimal performance, consists of one hidden layer, 
a LeakyReLu activation function, and one output layer with the dropout rate set at 0.5 and learning rate set at 
0.0001 (Fig. 7C). The input layer of the feed forward neural network has 2560 nodes (2561 if LLR is appended), 
while the hidden layer contains 1280 nodes, and the output consists of 2 nodes with a SoftMax layer to ensure the 
output probabilities sum to 1 for binary classification of benign/pathogenic. Only the pathogenic output node 
was considered and a value of 0.2 was selected as a threshold for predicting the pathogenic class. This threshold 
was selected by optimizing the MCC on the validation set during model training and the low value results from 
the high skewness of the dataset towards neutral variants.

Evaluation metrics
Accuracy, Precision-Recall, F1-score, MCC (Matthews correlation coefficient) and AUC-ROC (area under curve 
of the receiver operating characteristic) are some of the most popular metrics for evaluating binary classifiers. 
Since MCC takes all outcomes (true and false positives and negatives) into account (Eq. 1), it is less sensitive to 
class imbalance and is also more informative about the classifier’s performance at a given threshold35. In contrast, 
other measures are more sensitive to imbalance36 and the AUC-ROC gives a view of the overall performance of 
a classifier (across a range of thresholds) rather than the actual performance in a classification problem.

Therefore, we applied MCC as the main metric to measure the performance of predictors studied in this 
research, while using AUC-ROC as an auxiliary indicator.

Data availability
All data and code required to reproduce the model and analysis in this study are available at https://​github.​com/​
wlin16/​VariP​red.​git.
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