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Abstract

The work presered in this thesisfocussesn the sequenceand structural analysis

of antib odiesand hasfallen into three main areas.

First | deweloped a method to assesiow typical an antib ody sequences of the
expressechuman antib ody repertoire. My hypothesiswasthat the more\h uman-
like" an artib ody sequencads (in other words how typical it is of the expressed
human repertoire), the lesslikely it is to elicit an immune response when used
in vivo in humans. In practice, | found that, while the most and least-ruman
sequencegieneratedthe lowest and highest anti-antib ody reponsesin the small

available dataset, there wasl little correlation in betweentheseextremes.

Second,| examinedthe distribution of the pading anglesbetweenV, and V_
domainsof artib odies and whether residuesin the interfacein uence the pading
angle angle. This is an important factor which has essetially beenignored in
modelling antib ody structures sincethe padking anglecan have a signi cant e ect
on the topography of the conbining site. Finding out which interface residues

have the greatestin uence is alsoimportant in protocolsfor "humanizing' mouse



antib odiesto make them more suitable for usein therapy in humans.

Third, | dewloped a method to apply standard Kabat or Chothia numbering
schemesto an antib ody sequenceutomatically. In brief, the method usespro les
to idertify the endsof the framework regionsandthen lls in the numbersfor eat
section. Bendimarking the performanceof this algorithm against annotations in
the Kabat databasehighlighted seweral errors in the manual annotations in the
Kabat database. Basedon structural analysis of insertions and deletionsin the
framework regionsof artib odies, | have extendedthe Chothia numbering scheme
to idertify the structurally correct positions of insertions and deletions in the

framework regions.
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Chapter 1

Intro duction to iImm unology

The human body contains a number of microervironments that provide an ideal
niche for the growth and proliferation of seweral pathogenicand non-pathogenic
microorganisms. In order to prevert the ertry and survival of pathogens,eadh
of usis equipped with a compleximmune systemcapableof e cien tly conbating
invading microorganisms. The human immune systemcan be broadly divided into
two- the innate immune systemand the acquiredor adaptive immune system. As
the name suggests,nnate immunity is the inherert immune systemthat the or-
ganismis born with. The adaptive immune system,on the other hand, is acquired
during the lifetime of the organism. The innate adaptive systemis well deweloped
even in invertebrates, like the nematode Caenorhalalitis eleganswhile the adap-
tive immune systemis a unique feature of higher vertebratesstarting from jawed
shes. Referredto asthe immunological ‘Big Bang, the ewlution of the adaptive

immune systemconferredmany additional advantagesto the organismspossessing
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them.

1.1 Innate imm une system

The innate or the non-adaptive immune systemo ers the rst line of defenseand
provides a quick and immediate responseto invading pathogens. This branc
of immunity comprisesof seeral players, which provide a physical barrier to
pathogenertry, physiological barrier to their survival, and their elimination by
phagacytosis or extracellular killing of these pathogensto eliminate them from

circulation.

The skin is often the rst barrier encouriered by invading pathogens.In addition
to being impermeable, the lactic acid and fatty acids in sweat and sebaceous
secretionsfrom the skin are maintain a low pH, which is inhibits the survival of
most pathogens. Mucous secretingcells and cilia that propel mucous-etrapped
pathogensout of the body guardthe other openingsof the body like the respiratory
and urogenital tracts. In addition, many of the secretionsof the body, including
the tearsand saliva cortain bactericidal factorslike lysozyme,a hydrolytic enzyme

that is capableof destroying the bacterial cell wall.

If the microorganism managesto overcome these barriers and erter a tissue,
it encourers residen tissue macrophages. These cells are derived from circu-
lating monocytes that exit from circulation and settle down in various tissues.

Macrophagesare long-lived phagcacytic cellsthat are usually the rst cells of the
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innate immune systemto recognizeinvading pathogens. They do this using var-
ious cell-surfacereceptorsincluding CD14, a receptor that recognizesbacterial
lipopolysacdaride (LPS). Clustering of the receptors upon ligand binding in-
ducesphagaytosis of the pathogeninto vesiclesknown as phagosomesnside the
macrophage. These phagosomeghen fuse with vesiclescalled lysosomeswhich
are highly acidic compartmens harbouring enzymesthat can destroy the inter-
nalized pathogen. Howeer, the internalization of pathogensby macrophagegse-
sults not only in their destruction by active phagacytosis, but also triggers the
macrophageto secretevarious toxic chemicalslike hydrogen peraxide, nitric ox-
ide and superaxide anion into the surrounding tissue. In addition, macrophages
also secretecytokines, which are low molecularweight proteins that regulate the
function of immune cells. Thesecytokines attract another subsetof phagacytes{
the neutrophils. Theseare short-lived polymorphoruclear neutrophilic leukocytes
that are found in circulation. Local cytokine releaseinduces neutrophils to mi-
grate to the site of injury in large numbers. Just like macrophageshneutrophils
are alsophagacytic cellsthat actively engulfthe pathogensand participate in the

elimination of invading microorganisms.

Cytokines also trigger a local in ammatory response, which senesto not only
recruit more cellsof the immune system,but alsoto restrict the areaof infection.
An in ammatory responseis characterizedby redness,pain, heat and swelling in
the area of infection. The in ammatory mediators induce changesin the local
ervironmert i.e. they causevasdlilation of nearby blood vesselsand increasethe
expressionof adhesionmoleculeson the surfaceof endothelial cells. Thesesteps
facilitate the recruitment of circulating neutrophils for increasedphagacytosis,

monaocytes that will mature into more tissue macrophagesas well as mast cells
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and eosinophils.

In addition to these cell-mediatedinnate immune responses,tissue damagealso
activates seeral enzymatic systemsin the plasma. One of the most important
of theseis the complemen system. Although it was rst discovered as a factor
that augmerns the activity of humoral branch of acquired immunity, hencethe
name complemen proteins, it is now clearthat it is rst activated as part of the
innate immunity. The complemen systemcomprisesof a seriesof enzymatically
catalyzed reactions whose end products bring about various e ector functions.
Theseinclude the opsonizationof antigen to facilitate recognition by macrophages
thereby increasingtheir phagacytosis, promoting the in ammatory response,and
the formation of a menbrane attack complex that lyses pathogensby forming
pores on their surface. The complemem system can be activated on microbial
surfacesand also by antib odies, hencethey participate in both the innate and

adaptive immune system.

1.2 The Adaptiv e Imm une system

The most important cells of the adaptive immune system are the lymphocytes.
Thesecellscortinuously circulate through the blood and the lymph, thus monitor-
ing the status of the body. The two main typesof lymphocytesthat are involved
in the adaptive immune system are the B-lymphocytes and the T-lymphocytes.
Thesecell typesdi er not only in the surfacereceptorsthat they possesshut also

their method of recognition of foreign antigen, and their e ector medanisms. The
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key players of the adaptive immune systemare:

B-Lymphocytes
T-Lymphocytes

MHC molecules

1.2.1 B-Lympho cytes

B-lymphocytes mature in the bone marrow in the adult mammals,and are char-
acterized by the presenceof appraximately 1:5X 10° receptor moleculeson their
cell surfacethat are actually membrane bound antib ody molecules. All sud re-
ceptor moleculeson a single B lymphocyte are speci ¢ for one particular antigen.
The generationof the enormousdiversity of thesereceptorsis brought about by a
processtermed VDJ reconbination-a processwherely the germline encaled gene
segmets for B lymphocyte receptorsare reconbined in di erent ways to give rise
to unigue conbinations of nal genesequenceoding for receptorproteinsthat are
capableof recognizingtwo antigensdi ering only in oneresidue. Upon recognition
of an antigen by the receptor, these B-lymphocytes evertually di erentiate into
e ector cells called plasma cells, which secretesoluble antib ody molecules,and
memory B-cells. B-lymphocytes constitute the humoral immune responsebranch
of the adaptive immune system, as they can directly recognizesoluble antigens
in body uids (onceknown as humors). Their only cortribution to the adaptive

immune systemare the antib ody molecules.
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1.2.2 T-Lympho cytes

T-lymphocytes mature in the thymus and like the B-cells, also possessell sur-
facereceptorsfor antigen recognition. Howewer, unlike the B cell receptorswhich
are capable of recognizingsoluble antigens, T cell receptorscan only recognize
antigens displayed by special MHC moleculeson the surfaceof antigen-preseting
cells, or on self-cellsinfected with intracellular pathogenslike viruses. Hence,
T-cells constitute the cell-mediatedimmune responsebranch of the adaptive im-
mune system. When a T cell encourters an altered self-cell, it is stimulated to
proliferate and di erentiate into e ector cellsand memory T-cells. There are two
sub-populations of T-cells{ the T helper (T ) cellsandthe T cytotoxic (T¢) cells.
They di er in the type of additional cell surfaceglycoprotein molecules(CD4 or
CD8) they possess.Generally cells possessingCD4 function as TH cells while
those possessingCD8 function as T cells. Recognition of an MHC bound arti-
genic moleculeby TH cellsresults in their di erentiation into e ector cellsthat
secretevarious cytokines. Thesecytokines sene as activating signalsfor B-cells,
Tc cells, macrophagesand various other cells of the immune system. Activated

Tc cellsdisplay cytotoxic activity, and they destroy altered self-cells.

1.2.3 MHC molecules

The major histocompatibility complex (MHC) is a cluster of geneson chromo-
some6 in humans. It is also known as the HLA complexin humans. The loci

constituting the MHC complex are highly polymorphic. Se\ral alleles exist at
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ead locus, henceproviding for a wide range of antigen-binding MHC molecules.
The MHC cluster can be subdivided into three regionsencaling for three classes

of MHC molecules.

1. Class | MHC genes encale glycoprotein moleculesthat are expressecn
the surfaceof nearly all nucleatedcells. They are important for displaying
peptide antigens on the surfaceof infected or altered self-cellsfor recognition

by Tc cells.

2. Class 11 MHC genes encale glycoprotein moleculesthat are mainly ex-
pressednthe surfaceof antigen- presetting cellsi.e. dendritic cells,macrophages
and B-cells. They are important for displaying peptide antigens for recogni-

tion by TH cells.

3. Class |11 MHC genesencale a variety of secretedproteinsinvolvedin pro-
viding immunity, including somecomplemen proteins, soluble serum pro-

teins etc.

1.3 Activ ation of the adaptiv e imm une system

The activation of the two branches of adaptive immune systemoccur in di erent
manner. B-cellscaneither be activated on their own by somenon-protein antigens
(e.g. capsularpolysactarides on the surfaceof certain bacteria), or by interac-
tion with TH cellsthat recognizethe processedantigen-MHC Class |l complex

on the surfaceof B-cells. Interactions between speci ¢ co-stimulatory molecules
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Figure 1.1: Activation of the adaptive immune system

on the TH cells and B-cells, and directed releaseof cytokines by the TH cells
stimulate B cell proliferation and di erentiation into antib ody secreting plasma
cellsand memory cells. The activation of the adaptive immune systemis showvn

in Figure 1.3.

The activation of T cell responsesrequiresthe interaction of naive T-cells by spe-
cialized cells called the Antigen PresentingCells (APCs). Thesecellsinternalize
foreign bodies e ciently, either by phagacytosis or endacytosis, and processit

intracellularly for display with classll MHC complexon the cell surface. Three
types of cells function as professionalAPCs, namely the dendritic cells, B-cells
and macrophages Dendritic cells are perhapsthe most important professional
APCs of the immune system. They are phagacytic cellsarising from bone marrow
precursorcells,from wherethey migrate and settle down in varioustissues. After

internalizing a pathogenin the infected tissue, dendritic cells are stimulated to
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migrate to a peripheral lymph node or lymphoid organ, where naive T-cells are
constartly being circulated. Here, the dendritic cells display the processedanti-
genicfragmerts in a complexwith MHC Classll moleculeson their cell surface.
T-lymphocytes possessindghe antigen-speci ¢ receptor recognizingthe displayed
antigenic fragmert becomeactivated, and they proliferate and give rise to e ector

and memory cells.

The mostimportant componert of the B cell responsesare the B-cell receptorsand
antib odies. B-cell receptorsare memnbrane-bound antib ody molecules.Antib odies
belongto the immunoglobulin family of proteins, asthey possesa characteristic

compactstructure known asthe immunoglobulin fold.

1.3.1 Structure of an antib ody

The basic structure of an antib ody is shovn in Figure 1.3.1. Antib odies are Y-
shaped immunoglobulin moleculescomprisedof two light chains and two heary
chains. Ead chain in turn is composedof a variable region at the N-terminus
of the protein and a constart region at the C-terminal end of the protein. The
original four chain model was proposedby Porter (1959). The constart regions
of light chains have either of the two amino acid sequencesamedkappa ( ) and
lambda ( ). The constart regionsof the heavy chainshave oneof v e basicamino
acid sequencese. , , , ,or . Thesesequencesleterminethe isotype of the
antib ody molecules,and basedon the isotype of the heavy chain constart region,

immunoglobulinsadopt oneof 5 classesn humans{ IgG, IgA, IgM, IgD and IgE.
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The Y-shape of an antib ody was rst proposedby Valertine and Michael during
their studiesof an antib ody-hapten complexthrough electronmicroscoly (Valen-
tine and Green, 1967). The variable region of an antib ody (F,) consistsof two
identical light and heary chain componerts on either arm of the molecule(marked
V. and V, respectively in Figure 1.3.1). The variable regionsof an antib ody con-
tain the interaction site of the arntib ody with the antigen. The virtually in nite

sequencdiversity of the variable region allows an antib ody to bind with a wide

range of arntigens.

Among the Immunoglobulinisotypes,IgG is the most abundart, making up about
75% of all immunoglobulinsfound in the human serum (Junqueira and Carneiro,
2005). Further, IgGs consist of four subtypes: IgG1, 1gG2, IgG3, and IgG4
(GREY and KUNKEL, 1964;Gergely 1967), in decreasingorder of occurrence.
Thesesubtypesdi er mainly in their amino acid sequenceaswell asin the number

of disulphide bonds betweenthe heavy chains.

1.3.2 Generation of antib ody div ersity

The ability of the B cell receptorsto recognizea wide range of antigens arises
from the generationof a diverseset of B-cell receptorsspeci ¢ for almost every
possibleantigen that the organismmight comeacrossduring it's lifetime. Instead
of loading the genomewith genesencaling for ead speci c B cell receptor, the
adaptive immune system ewlved to generatediversity from a handful of gene

segmets by the simple processof reconbination.
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Figure 1.2: Structure of an Immunoglobulin (IgG1) consistingof 12 domains
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The genefamiliesencaling for B cell receptorsare presem on three chromosomesn

humans. The multigenefamiliesencaling forthe and light chainsarepresemn on
chromosomes< and 22 respectively, while those encaling for the heavry chains are
presem on chromosomel4. The germline sequence®f these multigenic families
consist of a number of coding sequencegalled genesegmets. It is thesegene
segmets that are rearrangedduring B cell maturation to give rise to various
combinations of sequencesThe and light chain genefamilies consistof multiple

V andJ genesegmets and asingleC genesegmeh The heary chain locusconsists
of multiple V, D and J genesegmets, aswell as multiple C genesegmets. The
rearrangedV(D)J genesegmets codesfor the variable region of artib odies, while

the C region codesfor the constart region.

1.3.3 VDJ Recombination

Reconbination of the V, D and J genesegmets is carried out with the help of lym-
phoidcell speci ¢ reconbinaseenzymesRAG-1 (Reconbination Activating Genes)
and RAG-2. Theseenzymesrecognizeunique sequencesanking the V,D and J
segmeis called the Reconbination Signal SequencgRSS). The RSSsare made
up of a consened heptamericsequencg5'CACAGTG 3') on oneend, a consered
nonamericsequencé5'ACAAAAA CC 3') onthe other end, and a spacerregionin
betweencortaining 12 or 23 basepairs. An RSScortaining a 12 basespacercan
only join to another genesegmenh possessin@3 basepair spacer,a rule known as
the 12/23 rule. EachV genesegmeth hasan RSSonit's 3 end, ead J genesegmen
onit's 5 end and eadh D genesegmen has an RSSon both sides. The nature

of the spacerin the RSSof the V, D and J genesegmets ensuresthat a V gene
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Figure 1.3: VDJ reconbination to producelight chains

segmenjoins only to a J and not to anotherV genesegmety and likewise,for the
J genesegmets. The presenceof di erent copiesof eah genesegmeh generates
a conbinatorial diversity that is a major cortributing factor towards generatingB
cell receptordiversity. Apart from this, seeral other medanismsalsoadd to the
existing diversity. In addition, the diversity of antib odiesis enhancedby combi-
natorial assaiation betweenthe light and heavy chain. The VDJ reconbination

for light and heavy chainsis shovn in Figures 1.3 and 1.4 respectively.

Junctional exibilit y

During the processof VDJ reconbination, the joining of the genesegmets is
often imprecise, leading to di erences in the nal coding sequenceor ead re-

conbination ewert. This junctional diversity hasbeenshown to occur within the
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Figure 1.4: VDJ reconbination to produce heary chains

third hypervariable region (CDR3) of the heavy and light chain. SinceCDR3 is a
regionimportant for antigen recognition, this processfurther increaseshe range

of epitopesthat can be recognizedby antib odies.

P-Nucleotide and N-n ucleotide addition

During the processof reconbination, the 3-OH end of the strand cleaved by RAG
enzymesforms a hairpin connectingit to the opposite DNA strand. This hairpin
is cut, sometimesresulting in a short single stranded region referred to as the
P-nucleotides. This is becauseaddition of complemetary nucleotidesto Il up
the gapresultsin the generationof palindromic sequencesN-nucleotide addition

refers to the addition of nucleotides by the enzymeterminal deoynucleotidyl
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transferase(TdT). Upto 20 nucleotidescan be added. N-nucleotidesare found
in V-D and D-J genejunctions of assemled heary chains asthe enzymeTdT is
expressedxclusiely at the time of heavy chain rearrangeeh and not during light
chain rearrangemet Thesenucleotidesare not encaled by the V, D or J gene

segmets and thus lead to additional diversity of the antib ody sequence.

Somatic hyp erm utation

There exists another medanismthat acts post generearrangemets of the heavy
and light chainsto generatemore antib ody diversity. Nucleotidesin the V region
of the antib ody chain are replacedby alternate nucleotidesin a nearly random
manner. These mutations occur at a much greater frequency as compared to
normal mutations, henceit is called hypermutation. It aids in generatingB cell
receptorsequencethat may bind more strongly to antigens. Sud a B- cell is then

selectedfor rapid proliferation in a processtermed a nit y maturation.

1.3.4 B-cell maturation, activ ation and proliferation

B-cell maturation

B-cells maturation beginsin the enbryo in the fetal liver, fetal bone marrow and
the yolk sac,and continuesduring adulthood in the bonemarrow. The maturation
processinvolves two distinct phases- antigen-independert phase and antigen-

dependert phase.
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Antigen-indep endent phase This phaseoccursin the bonemarrow in the ab-
senceof exposureto any antigen, and leadsto the generationof naive B-cells
that then enter into circulation. Lymphoid stem cellsgiveriseto the rst B-
celllineagecells-the progenitor B-cells(pro-B cell). In the niche provided by
the bone marrow stromal cells, thesepro-B-cellsdi erentiate into precursor
B-cells(pre-B-cells). This occurshy the closeassaiation betweenpro-B-cells
and stromal cellswhich is mediatedby cell-celladhesionmoleculesexpressed
onthe pro-B cell and the correspnding receptorpresen onthe bonemarrow
stromal cells. Initial cortact is mediated by moleculedike VLA-4 expressed
on the pro-B-cells that recognizeand bind to it's ligand VCAM-1 on the
stromal cell. This is followed by the activation of c-Kit receptorson the pro-
B-cells by stromal cell surfacemolecules. By virtue of it's tyrosine kinase
activity, c-Kit kick-starts a seriesof events that leadto the proliferation and
di erentiation of pro-B-cellsinto pre-B-cells. Cytokines like IL-7 secreted
by the stromal cellsfurther cortributes to the maturation processand also

leadsto the detachmernt of pre-B-cellsfrom stromal cells.

The maturation of pro-B-cellsinvolvesig-Generearrangemets. Theseoccur
in a xed order. First the heary chain generearrangemenh takesplace. The
DH - J H joint is formed, followed by the VH - DH J H rearrangemenh
to give rise to a productive genearrangemeim. At this stage,the B-cell is
termed pre-B cell. The subsequen productive rearrangemenh of the light
chain genegivesrise to an immature B cell that expressedgM on it's cell
surface. The transition of immature B-cellsto mature B-cells proceedswith

the expressionof IgD isotype of the B cell receptorin addition to the IgM

isotype.
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Before mature B-cells erter into circulation, they are tested for speci city
to self-artigens. Sincethe ertry into circulation of B-cells reactive to self-
antigens can be fatal, this processof negative selectionplays an important
role. About 5x107 B-cells are produced per day by the bone marrow, and
only about 10% of theseerter into circulation. Recognitionof a self-artigen
by an immature B-cell leadsto the crosslinkingof menbrane IgM molecules
and subsequendeath. Howewer, in many casesfollowing self-ariigen recog-
nition, the immature B-cell quickly edits it's light chain in an attempt to
generateB-cell receptorsthat are no more speci ¢ towards the self-artigen.

The antigen-independen phaseof maturation is shovn in Figure 1.3.4.

An tigen-dep endent phase Mature B-cells that erter circulation survive only
for a few weeksunlessactivated by an antigen againstwhich their receptor
displays speci city. Antigenscantrigger di erent routes of B cell activation
depending on their nature. Someantigens can directly activate B-cells by
binding to the B cell receptor, while others stimulate B cell activation via a
special classof T-cells called helper T-cells (TH cells). Therefore, antigens
stimulating B-cellscanbe classi ed asthymus-independent (TIl) andthymus-
dependent (TD) respectively. The antigen-dependernt phaseof maturation

is shavn in Figure 1.3.4.

Thymus-indeendert antigens can be of two types:

Type-l Tl antigens e.g. gram-negative bacterial cell wall componert
lipopolysacdarides, which is capableto non-speci cally activating B-
cells when presen in high concetrations. These are truly thymus-
independent antigens as they stimulate B-cell responseeven in nude

mice, which lack a thymus and hencecannot produce T-cells. B-cell

42



Antigen-independent phase (Bone marrow)

)
Pro-B cells \ - V4
Lt Pre-B cells ——  Nature B cells
-
L “ ‘ﬁ. IL-7 ; -
Bone marrowr .

strorua cell N

Figure 1.5: Antigen-independen phaseof B-cell maturation

responseto these antigens is not accompaniedby isotype switching,

a nit y maturation or generationof memory cells.

Type-ll Tl antigens e.qg. bacterial cell wall polysactarides. Theseare
usually highly repetitive moleculesthat lead to cross-linkingof migM
moleculeson the B-cell surfaceand subsequenactivation of the B-cell.
The completeactivation of B-cellsby thesetype of antigensalsorequire
cytokines secretedby TH cells. A nit y maturation or generation of
memory cells does not accompary b-cell responseto these antigens.

Howe\er, there is somelimited isotype switching involved.

Thymus-depgenden antigensrequire the direct involvemen of helper T cells
for activation of the humoral response. Theseare soluble protein antigens
that cannot give rise to e ective activation of B cells on their own. The
stepsof activation by TD antigens are more complicated, but they result in

isotype switching, a nit y maturation and generationof memory cells.
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1.3.5 B-cell activ ation

When activated by an arntigen, naive B-cells are stimulated to exit from the GO
or resting phaseof the cell cycle and begin replication and di erentiation. This

activation involvestwo stepsthat require two typesof signals:

Competencesignals,which stimulate naive B-cellsto exit from GO and erter
the G1 phaseof the cell-cycle. Two signals(signal 1 and 2) cortribute to

the competencesignals.

Progressionsignals,which drive the cell from G1 to the S phaseof the cell

cycle,and ultimately to the replication and di erentiation of B cells.

Thesetwo signalsmediatetheir e ects by activating signaltransduction pathways
downstream of the B-cell receptors. The migM and migD have short cytoplasmic
tails that areinsu cien t for e cient signaltransduction. To overcomethis short-
coming, mlgs assaiate with a disul de-link ed heterodimer Ig- /lIg- to form the
complete B-cell receptor (BCR). The cytoplasmictails of Ig- /Ig- corntain a se-
guencemotif of 18 residuescalledthe ImmunoreceptorTyrosine-basedActivation
Motif (ITAM) which can assaiate with seweral downstream intracellular signal
transducerslike the Src and Syk tyrosine kinaseswhen activated by crosslinking
of migs. This leadsto the phosphorylation of tyrosine residuesin the Ig- /Ig-

cytoplasmic tails and the activation of multiple downstream signaling pathways.
The end result of theseewens is the transcriptional activation of seweral specic

genesthat are further neededfor B-cell responseto antigens.
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B-cell activ ation by thymus-dependent antigens

TD-antigens are not competert enoughto induce activation of B-cells on their
own. They are instead internalized by B-cells that recognizethem and are dis-
played on the cell surfacein conjugation with MHC-11 molecules. The antigenic
peptide-MHC-II complexis recognizedby TH-cells and this interaction leadsto
the formation of T-B conjugates. This conjugate formation is accompaniedby
polarizedintracellular rearrangemen of the golgi and the microtubule-organizing
certer towards the site of T cell-B cell interaction. This is believed to aid in the
directed releaseof cytokinesfor B-cell activation. MIgM cross-linkingand interac-
tion of speci c ligand-receptormoleculeson the T cell and B-cell surfaceprovides
the competencesignalneededo drive the B-cell from GO to G1 phase. This signal
enablesB-cellsto expresscytokine receptorson their cell surface. Cytokines (IL-

2, IL-4 and IL-5) releasedfrom the TH-cells in a directed manner bind to these
receptorsand provide the progressionsignal, leading to the proliferation of these

activated B-cells. Subsequetly, theseB-cells undergodi erentiation.

B-cell dieren tiation

B-cell activation and di erentiation takes place in peripheral lymphoid organs
like the lymph nodes. These are specialized organs that trap antigens circu-
lating through the lymphatic system. These are also organsthrough which T-
lymphocytes and B-lymphocytes constartly re-circulate. Antigensthat erter the
body are processedby professionalantigen-preseting cells and brought to the

T-cell zoneof local peripheral lymph nodes. Circulating naive T-lymphocytesare
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exposedto the antigen and those displaying speci ¢ recognition for the antigen
are trapped and activated to becomeTH cells. Circulating B-cells erter lymph
nodes and most B-cell quickly passthrough the T-cell zoneto enter the B-cell
zone(the primary follicle). Howevwer, those B-cells possessings-cell receptorsthat
speci cally bind the antigen are trapped within the T-cell zone. The interaction
betweenactivated TH cellsand B-cellsleadsto the formation of a primary focus
of clonal expansionof both lymphocytes for seweral days. . This constitutes the
rst phaseof the primary humoral immune response. Many of the cellsin the
primary focusdie by apoptosisat the end of the rst phase. Thosethat survive
can have either of two fates. SomeB-cells di erentiate into plasmacells capable
of antib ody secretionand migrate to the medulla of lymph nodes. Antib odies

secretedfrom theseplasmacells provide immediate protection to the individual.

Someof the remaining B-cells and T-cells migrate to the primary follicles where
they proliferate and form a germinal certer. Evens that transpire in germinal
certers sene to provide e ective later responsein caseof re-infection. B-cells
undergoa number of di erentiation ewerts in germinal certers including somatic
hypermutation, a nit y maturation and isotype switching. This senesto select
for B-cellsdisplaying increaseda nit y for the antigen and enablestheseselected
B cells to perform various e ector functions depending on the isotype. These
B-cells can now di erentiate further into plasmacellsand memory cells. Plasma
cells are terminally di erentiated non-dividing cells that secreteantib odies at a
high rate. They migrate to the bone marrow wherethe bonemarrow cellsprovide
survival signalsto plasmacells. Theseplasmacellssene asalong-lasting sourceof
high-a nit y antib odies. Memory cells are long-lived cellsthat provide long-term

immunological memory
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1.3.6 B-cell e ector-resp onse

The rst encourer with an antigen leadsto a primary humoral response (de-
scribed above) that culminates in the production of plasma cells and memory
cells. The primary humoral responseis characterizedby a lag phase,which is the
time requiredfor clonal selection,proliferation and di erentiation of naive B-cells.
Memory B-cellsthat arisefrom the primary humoral responseare key to initiating

the secondaryhumoral responsein caseof re-infection by the sameartigen. The
secondaryresponseis characterizedby a much shorter lag period and an immune

responseof greater magnitude as comparedto the primary response.

Antib odies syrthesizedin responseto an infection e ectively eliminate antigens

by a variety of meansincluding:

1. Acting as opsonins, thus enabling easy recognition by antigen-preseming

cells.
2. Activating the complemen systemto bring about lysis of infecting cells.

3. Binding to target cellsand facilitation recognitionby cytotoxic T-cells, thus

leading to antib ody-dependen cell-mediatedcytotoxicity (ADCC).

4. Binding and neutralizing bacterial toxins

The large number of antib ody moleculessecretedby plasma ensuresthat the

invading pathogenis e ectively eliminated.
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1.4 T-cell responses and cell-mediated imm une

system

1.4.1 T-cell receptor

T-cell receptorsare heterodimers composedof either  chainsor  chains. Like
B-cell receptors,the diversity of T-cell receptorsis generatedby generearrange-
merts. The T-cell receptoris also asseiated with a signal-transducingcomplex
CD3 which functions in a similar way to the Ig- /Ig- complexin the B-cell re-
ceptor. The cytoplasmictail of CD3 possessethe immunoreceptortyrosine-based
activation motif (ITAM) by which it can interact with downstream kinasesand
activate downstreamsignal transduction kinasesin responseto T-cell receptorac-
tivation. The T-cell receptor recognizesan antigen only in a complexwith MHC
molecules. While the variable region of the T-cell receptor binds to the peptide
fragmert in the peptide-MHC complex, the extracellular domains of coreceptors
CD4 and CD8 mediate interaction of the T-cell with the MHC moleculein the

peptide-MHC complex.

1.4.2 T-cell maturation

T-lymphocytes originate in the bone marrow, but subsequetty migrate to the
thymus for dewelopmert in the eighth or ninth weekof gestationin humans. Sim-

ilar to B-cell developmen, T-cells also undergo a seriesof generearrangemets
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that giveriseto cellsexpressingdi erent cell surfacemolecules.T-cell maturation
starts with the expressionof a pre-T cell receptor lacking surfaceCD4 and CD8
(referred to as the double-negativ e state) consisting of the CD3 protein, the
-chain of the TCR and a pre-T . First the TCR -chain generearrangemen
takes place following which the expressionof CD4 and CDS8 is induced. These
thymocytesare now called double-positive or CD4* 8" T-cells possessingdertical
-chain sequence.lt is only when these double-positive T-cells stop proliferat-
ing that the TCR -chain generearrangemets take place. T-cells that fail to
make a productive generearrangemeh do not mature and they die by apoptosis.
Those T-cells that survive are subjected to the next phaseof selectiontermed
thymic-selection. This step is important in ensuringthat only those T-cells that
recognizeself-MHC moleculesin conjunction with foreign antigens are released

into circulation. Thymic-selectionoccursin two phases:

1. Positive selectionof T-cells capableof recognizingself-MHC moleculesthus
resulting in MHC restriction. This is brought about by an interaction with
thymic epithelial cells. During this selection, -chain generearrangemets
continuesto take place and those T-cells that fail to express -TCR with

self-MHC recognition die by apoptosisin 3-4 days.

2. Negative selectionof T-cells possessingpigh-a nit y receptorsfor self-artigens
displayed by self-MHC molecules,or to self-MHC moleculesalone, resulting
in self-tolerance.Positively selectedT-cells interact with dendritic cellsand
macrophagesearing class| and classll MHC moleculesand self-reactive

T-cells are eliminated by apoptosis.
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At the end of thymic-selection,only those T-cells capableof recognizingaltered-
self cells are able to survive and mature. By the time these mature T-cells are
releasedinto the periphery, they are either single-positive CD4+ thymocytes or
single-positive CD8* thymocytes. TheseT-cells that have not yet beenactivated

by an antigen are termed naive T-cells.

1.4.3 T-cell activ ation

Naive T-cells that exit from the thymus cortinuously circulate betweenthe blood
and lymphatic system. This includesa passagehrough the various lymph nodes,
wherethe chanceof encourtering an antigen or an artigen-preseting cell display-
ing an antigenic peptide is very high. Upon infection by an antigen, professional
antigen preseting cells ingest, processand display antigenic fragmerts on their
cell surface. Theseantigen-preseting cellsthen migrate to the nearby lymph node
where they are sampledby circulating naive T-cells. The most potent activator
of naive T-cells are dendritic cells. T-cells that are not speci ¢ for a particular
MHC-peptide complex quickly re-erter circulation, while those displaying speci-
cit y to the complexare e cien tly retainedin the lymph node. Interaction of the
TCR with the peptide-MHC complexinitiates a seriesof ewverts in the naive T-cell
leadingto it's exit from the resting GO phaseand entry into the cell cycle. This is
accompaniedby the expressionof seweral geneswhoseproducts enablethe naive

T- cell to proliferate, di erentiate, and stimulate e ector functions.

The interaction betweenTCR and CD4/CD8 on the T-cell and the peptide-MHC

complex on the antigen preseting cell alone is not su cient to induce activa-
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tion of nave T-cells. Accomparying this interaction is an antigen-nonspeci ¢ co-
stimulatory signal provided by the interaction between CD28 molecule on the
T-cell and B7 moleculeon the antigen-preseting cell. Co-stimulation of the T-
cell leadsto the increasedproduction of the cytokine interleukin-2 (IL-2) and its
receptor (IL-2R) by the activated T-cell, stimulating it's own proliferation and

di erentiation.

1.4.4 T-cell dieren tiation

The initial proliferative phase of T-cell activation lasts for about 4-5 days ,af-
ter which activated T-cells di erentiate into armed e ector T-cells and memory
T-cells. Dierentiated T-cells do not need stringent conditions for stimulation
and therefore, any subsequen encouner with the peptide-MHC complex leads
to a rapid response. For example, armed e ector T-cells no longer needa co-
stimulatory signal for their activation. Armed T-cells are capableof syrthesizing
all the e ector moleculesneededto bring about an e ectiv e cell-mediatedimmune
response.CD4+ T cellsdi erentiate into armede ector TH (T helper) cellswhile

CD8" T cellsdi erentiate into armede ector TC (T cytotoxic) cells.

CD4" T cellsare capableof di erentiating into either of two subsets,which di er

in the cytokinesthey produceand alsotheir e ector functions:

T 1 subsetwhich activatesthe cell-mediatedfunctions of the immune sys-
tem including activation of cytotoxic T-lymphocytes. This subsetof CD4*

T-cells secretescytokineslike IL-2, IFN- and TNF-
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T 4 2 which functions as a helper cell for B-cell activation and secretedL-4,

IL-5, IL-6 and IL-10.

Activated CD8" T cellserter into circulation and recognizeand actively Kill in-

fected cellsby two major pathways:

1. The releaseof cytotoxic proteins like perforins and granzymes.Perforins are
pore-forming proteins and they lead to cell death by virtue of disrupting
the membrane integrity of target cells.Granzymesre lytic enzymeshat are
beliewved to trigger a cascadeleadingto DNA fragmertation of target cell

and it's apoptosis.

2. The activation of apoptosisin target cellsby engagingFasligand on cytotoxic

T-cells with Fasreceptor on target cell surface.

1.5 Imp ortance of the imm une system

Eadh and ewery player of the immune systemis essetial for e ectively preverting
infections and diseases.This is highlighted by the manifestationsof immunode -
ciencydiseasesThesediseasesanarisefrom a defectin any or several componerts
of the immune systeme.g. defectsin the phagacytic system,complemenm system,
cell-mediatedimmune system or humoral system. Immunode ciencies a ecting
the humoral immune system can arise from defectsin B-cell maturation, defects
in mature B cells, ine ective TH cell activation or inappropriate T cell suppres-

sion. Examplesof sud diseasesnclude X-linked hyper-IgM syndrome,common
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variable immunode ciency etc. Cell-mediatedimmunode ciencies can arise from
defectsin T cell maturation for example DiGeorge syndrome. One of the most
se\ere immunode cienciesarisesdue to defectsin the humoral and cell-mediated
branch of the immune system.for example, defectie T and B-cell maturation
givesrise to Sewere Combined Immunode ciency Disease(SCID) while failure to
expressVIHC moleculeggivesriseto the Bare-Lymphocyte Syndrome. Sud se\ere
disordersusually result in an early death unlessan e ective treatment to replace

the defective immune cellsis given.
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Chapter 2

Intro duction to computational

metho ds In bioinformatics

2.1 An intro duction to genetic algorithms

The principles of biological ewlution have inspired many dewlopmerts in the
eld of computer science. Genetic algorithms (GAs) are seart algorithms that
mimic principles of natural selectionand natural geneticsto nd the bestpossible

solution in a seart spacethat is large and complex.

Geneticalgorithms, togetherwith Evolution strategies(Redherberg, 1965;Reden-
berg, 1973) and Evolutionary programming (Fogel et al., 1966) comprisea eld
termed as Evolutionary computation. GAs wereoriginally deweloped by John Hol-

land and colleagueq1975) with the following aims:
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To synopsizethe processesnvolved in ewlution and natural selection.

To designcomputational methods that would be basedon the principle of

natural selection.

The core theme behind GAs has been searting for optimal solutions in large
and complex sear® spaceswith reducedcost and extendedfunctionality for ar-
ticial systems. The capabilities of GAs in nding optimal solutions have been
establishedin numerouspapers (e.g. Axelrod (1984), Axelrod and Dion (1988))
and the themesof adaptation and ewlution appeal naturally aspotential ways of
nding solutionsto complex problemswherethe sear® spaceis enormous. GAs
incorporate these philosophiesthrough crossoverand mutation. In addition, the
fundamertally parallel nature of GAs makesit possibleto examinelarge popula-

tions of candidate solutionsto problemssimultaneously

2.1.1 Elements of a genetic algorithm

The technical terms usedin describinggeneticalgorithms bear closesenblanceto
scieri ¢ termsin biology. Understandingthe biologicaltermsis thereforea useful
stepin understandingthe basiccomponerts of a geneticalgorithm. The following

biological terms constitute the basicterms of a GA:

Chromosome The term Chromosomein biology usedto denotestrings of DNA.

A chromosomein a GA is usedto referto a potertial solutionto the problem
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being addressedand is usually encaled as a bit string (i.e. a set of boolean

values) (SeeSection2.1.3).

Gene In biology, the term Generefersto a block of genomicsequencevhich per-
formsa speci ¢ function. In GAs, a geneis either a singlebit or short blocks
of adjacen bits in a chromosomethat correspnd to a speci ¢ characteristic

of a chromosome.

Allele The biological meaningof the term Allele is a menmber of one of se\eral
forms of a gene.Ead allele of a geneencalesfor a speci c trait or function.
In a GA, an allelerepresets all the possiblecombinations of valuesat every

position (generallya 0 or 1).

2.1.2 GA Operators

Further, two commonly usedterms in GAs are parent and child populations of
chromosomes.The parent population of chromosomess initially createdby ran-
domly asserbling strings with combinations of alleles (0 and 1 in GAs). The
guality of every chromosomeis evaluated to selectparerts and a new population
of child chromosomesis created by Crossoverand Mutation. These steps are

descriked belonv and are commonly referredto as GA operators:

1. Selection: This term is usedto descrike the processof choosingparert chro-
mosomedor reproduction. Parert chromosomesre evaluated for their qual-
ity and assignedscoresand selectionfor reproduction is biasedtowards par-

erts that have good scores. There are seeral methods of selectingparent
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chromosomeswhich are descriked in the following sections.

2. Crosswer: Oncetwo parert chromosomeshave beenselectedfor reproduc-
tion, arandomlocusis chosenand the parert substringsare splicedtogether

to form a new chromosome.

3. Mutation: Onceparert substringshave beensplicedtogetherto form a new
chromosome someallelesin the newchromosomeare changedrandomly and

this operation is known as Mutation.

2.1.3 Encoding a problem

The processof represeting a problem to the computer is termed as enading
the problem. Optimal encaling of problemsfor genetic algorithms is certral to
their successMost geneticalgorithms are encaled as xed length chromosomes.
Howewer, the encaling sthemeis largely problem-speci ¢ and a number of encal-
ing shemeshave beendevisedfor GAs. Someof the most prominernt encaling

schemesare:

1. Binary encdaling: This is the most commonencaling method for a GA and
tracesits history badk to the time when genetic algorithms were rst de-
scribed by John Holland and colleaguegHolland, 1975). Binary strings are
usedto encale potertial solutionsto the problem at hand with ead posi-
tion cortaining one of two possiblealleles: 0 or 1. Holland and colleagues
establishedthat the binary scheme has an inherertly parallel nature com-

paredwith shorter strings that have more than two possibleallelesat every
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position. Howeer, for someproblemssud as ewlving weights in a neural

network, the binary encaling sdhemeis not the best option.

2. Many-character and real-valued encaling: There are some problems for
which a simplebinary encaling will not be adequate.For example,whenone
of the inputs to a geneticalgorithm is the torsion angle of a speci ¢ residue
in a protein, it would be more corveniert to have a real-valued encaling
shemewhereead position in the string is represeted by numbersbetween
0 and 9. Howe\er, there are no establishedstandardson the best encaling
sthemeand while a real-valued encaling is useful in one problem, a simple
binary encaling sdhememight su ce for another. The encaling schemewill

depend on the problem being addressedn the geneticalgorithm.

3. Treeencdling: In this scheme,every chromosomeis represetted asa tree of
objects. This schemeis most suited for ewlving rules or programs. It has
an open-endedlimit on the seart space. Howeer, there are no standard
bendimarks for the e cacy of this encaling method, asdewlopmen e orts
for this sthemeof encaling are currertly at a very nascen stage(O' Relilly

and Oppader, 1995; Tackett, 1994).

2.1.4 Selection metho ds

The processof selectionin a GA implies the selectionof parert chromosomego
createa new chromosome.All selectionmethods are biasedtowards the selection
of parerts that have very high scores.There are many di erent selectionmethods

and their applicability dependson the nature of the problem. The following are
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examplesof the most commonly usedselectionmethods:

Roulette wheel selection

This is tness-proportionate selectionmethod wherethe likelihood of a particular
parernt being selectedis given by the tness of the parent divided by the average
tness of the ertire population of chromosomes.The stepsinvolved in this algo-
rithm are detailed below. Thesestepsare typically usedto select2 parerts which

are then crossedover to createa new chromosome.

Sort the tnessesof the parert chromosomesn ascendingorder.

For the population of parert chromosomesgcalculatethe total tness T.

Selecta random valuer betweenO and T.

The chromosomewhose tness puts the sum (when summedin ascending

order of tnesses)above the randomly chosenvaluer is chosenfor crosseer.

One problem with Roulette wheelselectionis premature convergenceof the pop-
ulation of chromosomes.lInitially , the population is quite diverse. Someparerts
that scoresigni cantly better than othersareselectedrequertly and, whencrossed
over, result in the sameset of child chromosomesbeing created. This can cause

the population to convergein a local minimum and becomesaturated.

60



Sigma selection

Se\eral techniques have been deweloped to overcomethe problem of premature
convergenceof the chromosomepopulation. One sud strategy is Sigmaselection
(Forrest, 1985). In this selectionmethod, the useof the raw scoresof the chromo-
somesis avoided. Instead, an expected value is calculated for eady chromosome,
the value of which dependson the scoreof the chromosome,the mean scorefor
the population and the standard deviation in the scoreof the population. The

expectedvalue is calculated as:

8
21+ 1O i (1)6 0

(i ) = w10 (2.1)
71 if (t)=0

where €(i; t) is the expected value for chromosomei at time t, f(i) is the tness
(or score)of chromosomel, f (t) is the average tness of the population at time t
and (t) is the standard deviation of the population tness at time t (Mitc hell,

1996).

Melanie Mitc hell reasonghat, at the beginning of the GA whenthe tness scores
are fairly divergen, the expectation value for chromosomeswith high scoreswill
not be much higher than the averagescoreof the population (f (t)). Howewer,
after seweral time stepsof the GA when the population starts to corverge, the
standard deviation in tness levels( (t)) is small, and the chromosomeswith high

scoreswill stand out.
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Boltzmann selection

Boltzmann selectionis only slightly di erent from Sigmaselectionin that a "tem-
perature' componert is involved while calculating the expectation value for every
chromosome.A high temperature factor ensureghat all geneshave roughly equal
chancesof being selectedfor crosseer. At the beginning of the GA run, the pop-
ulation of chromosomess likely to be more diverseand thereforethe variancein
their scoresis also high. In order to boost variability in the population at the
earlier stagesof the GA, a high temperature factor is applied in calculating the
expectation factor. Howewer, ascorvergenceoccurs,the variancein scoregeduces

and the temperature factor is alsoreduced.

The expectation value for every chromosomeis calculated as follows:

(2.2)

wheref(i) is the scoreof chromosome, T is the temperature, (ef#) denotesthe

averagescoreof the ertire population at time t.

Rank selection

This sdhemewasoriginally deweloped by Baker (1985)in which ewvery chromosome

is assigneda rank depending on its score. Assuming a population of N chromo-
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someswhich are all distinct, the highest-scoringchromosomeis assigneda rank
of N and the lowest-scoringchromosomelis assigneda rank of 1. In this way, the

needfor absolutescoresis eliminated.

The procedureof selectingtwo parerts for crosseer is similar to Roulette-wheel
selectionwith the di erence being that scoresare replacedby ranks. Every chro-
mosomein the population is assigneda rank betweenl1 and N { the chromosome
with the lowest scoreis given a rank of 1 and the chromosomewith the highest
scoreis given a rank of N. The following stepsare performedtwice to selecttwo

parerts for crosseer.

Sort the parert chromosomesn ascendingrank order.

For the population of parert chromosomesgcalculatethe total rank T.

Selecta random valuer betweenO and T.

The chromosomewhoserank puts the sum(whensummedin ascendingorder

of ranks) above the randomly chosenvaluer is chosenfor crosseer.

Tournamen t selection

Se\eral of the selectionmethods described above employ time-consumingcomputa-
tions to calculatethe probability of selectionof every chromosomein a population.
For example,in Rank-basedselection,chromosomesare required to be sorted in
increasingorder of their scoresso that selectioncan be biasedtowards chromo-

somesghat have high scoresand thereforelow ranks. Similarly in Sigmaselection,
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one round of calculationsis usedto calculate the mean scoreof the population
and another to calculate the probability of selectionfor eady chromosomein the

population.

Tournamen selectionavoids theseproblemsby employing simple selectionproce-

dures. The selectionof chromosomedor crossweer are performedas follows:

SelectN chromosomesat random from the population.
Choosea random number r betweenO and 1.

If r is lessthan k (a user-de ned parameter of the algorithm), then the
most t of the N chromosomess chosen. Otherwise, one of the remaining

chromosomess chosenat random.

2.1.5 Replacement strategies

Oncechild chromosomesave beencreatedafter crosseer of parert chromosomes,
the processby which the parert and child chromosomesare conbined to yield a
new population is termed as replacemen The two most common replacemen

strategiesare:
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Generational replacemen t

This is the oldest replacemenh strategy and came into existencewhen genetic
algorithms were originally deweloped. This method mimics the biological model
in which a whole population of parerts are replacedby children. In this method,
the population of parert chromosomess completely replacedby a population of

child chromosomes.

Steady State Replacemen't

The Steady State Replacemen strategy is a slight variation of generational re-
placemen. In this method, only a few individuals from the parernt population are
replacedby individuals from the child population. The replacedindividuals are
usually the least-t parerts. This method is usedin systemswhere incremenal
learning is important and members of a population collectively represen the so-
lution to a problem (SeeSywerda (1989), Sywerda (1991), Whitley et al. (1989),

De Jong and Sharma(1993)).

Elitist replacement

This method is a slight variation of the Steady State Replacemeh method in
which the best genesfrom the common pool of child and parent chromosomes
are retained. The principle behind this replacemen strategy is to retain the best

chromosomedrom every generationsothat they are not lost in future generations

65



during cross@er and mutation to create new populations. This method hasbeen
shovn to be very e ective in signi cantly improving the performanceof a GA

(De Jong, 1975).

2.2 Intro duction to articial neural networks

2.2.1 Machine learning approac hes

Machine learning approaheswere deweloped with the aim of identifying patterns
in data where they cannot be easily described by a set of mathematical rules.
Howeer, the eld of madine learning is vast consideringthat learning can be
appliedto seeral typesof problemssudt asimagerecognition, classi cation prob-
lems, natural languageprocessingand robotics, to namebut a few. In my PhD, |
have usedarti cial neural networks along with geneticalgorithms to predict the
padking angle at the interface of the light chain and heary chain variable region

from the nature of residuesin the interface (SeeChapter 5).

The most prominent machine learning techniquesare:

Support vector machines (SVMs) Support Vector Machinesarebasedon Vap-
nik's statistical learningtheory (Vapnik, 2000). SVMsare principally binary
classi ersi.e. they classifya result as belongingto one of two possibleout-
comesets. SVMs are thereforenot suitable for the prediction of the padking

angle.
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Decision trees (DTs) Decisiontrees are usually usedto create a set of rules
from which a classi cation can be made. They accepta set of properties as
input and output a seriesof yes/no decisiongRusselland Norvig, 1995)and
are thereforenot suitable for the prediction of padking angle. DTs are most

often usedin data mining applications and in classi cation problems.

Bayesian networks (BNets) Bayesiannetworks are basedon the Bayes the-
orem (Bayes, 1763) and are amongstthe most powerful madine learning
techniques. Howewer, a requiremen for the use of BNets is that the data
to be predicted must resentle a normal distribution. As will becomeclear
from Section5.1in Chapter 5, the padking angledistribution is indeednor-
mal. The use of BNets for the prediction of padking angle was therefore a

possibility.

Articial neural networks (ANNs) Arti cial neuralnetworksassumeno prior
distribution of data and canbeappliedto learnany type of data. | decidedto
useANNSs to predict the padking angleasthere was moretechnical expertise

in the group for ANNs comparedwith BNets.

2.2.2 Articial neural networks

An Arti cial neural network (referred to as just Neural network) is a system
inspired by the working of the neural system. The biological nervoussystemcanbe
imaginedasconsistingof neurons (nerve cells)which are connectedto oneanother
through connectionsor synapses Similarly, arti cial neural networks are made of

neurodes which are the basicfunctional units. The schematic represemation for a
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Figure 2.1: Sthematic represetation of a neurade in an arti cial neural network.
Figure shavs the inputs to the neurode X1, X2, X3...Xn, weights of synapsedV1,
W2, W3...Wn, summation function , biasb, activation function and output Y.
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neurode in an arti cial neural network (ANN) is shavn in Figure 2.1. The main

componerts of an arti cial neural network are:

1. Synapses:Synapsegorm the interconnectsbetweenneurodes. Each synapse
that connectsa certain input to the neurade is characterisedby a weigh.
For example,in Figure 2.1, the weigh for the synapsethat links the second
input to the synapse(X2) is represeted as W2. For ewery neurode, the
input signal Xi is multiplied with the correspnding synaptic weight Wi.
Thesequartities are summedup for all the inputs and togetherwith the bias
function b will determinethe output of the neurade. It must be emphasised

that the synaptic weight may be a positive or negative value.

2. Adder: An adder addsthe product of all the input signalsand the corre-

sponding synaptic weights. In Figure 2.1, this is represeted as .

3. Bias function: This function is capableof increasingor reducing the input

to the activation function. The bias function is shavn asb in Figure 2.1.

4. Activation function: This function limits the output amplitude of a neurode

and is shovn as (.) if Figure 2.1.

Considerfor examplethe neurode k™ in an arti cial neural network. The input

to the neural network as summedby the adder (uy) is given by:

Ug = . Wi X (23)
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Further, the output of the neurode is given by yj:

Ye = (W) (2.4)

where v, is referred to as the induced local eld or the activation potential. v

generally cortains a bias function sud that:

Vg = Uk + b« (25)

The bias function in Equation 2.5 has the e ect of applying an a ne transfor-
mation to the additive input to the neurade uk. It must be noted that the bias
function is a parameterthat is external to the neurade and may be either a posi-
tive or a negative value. Depending on the value of the bias function b, the plot

of vk vs. ux may not passthrough the origin (Figure 2.2).

In the actual implemertation of an arti cial neural network, the bias function by

of a neurade Kk is fed asan input signal xo which is given by:

Xo= +1 (2.6)

and the weigh of the synaptic connectionfor this input is:
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Figure 2.2: Plot of inducedlocal eld (V) vs. the adderfunction (Uy)
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Wo = b (2.7)

The induced potertial v, and output y, of a neurade k may be reformulated as:

Vg = . Wi X; (28)

Yk = (W) (2.9)

A neural network typically consistsof a three-layered architecture as shown in
Figure 2.3: the Input layer, Hidden layer, and the Output layer. Ead layer
consistsof a set of neurodes with interconnectsbetween the neurodesin ewvery
level. The interconnectsthat link the neurodesare the synaptic connectionsand
are characterisedby weighs descrited above. Neural networks learn by adjusting

the weights of the synaptic links betweenthe neurodesin ead layer.

2.2.3 The processof learning: Learning algorithms

There are primarily two typesof signalsin fully-connected neural networks (such

asthat shown in Figure 2.3) (Parker, 1987):

Functional signal: A functional signalis onethat enters the arti cial neural
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Input layer Hidden layer Output layer

T ooo

Figure 2.3: Three-layered architecture of a neural network. Eacdh neurode of the
input layer is connectedto ead neurode in the hidden layer which in turn is
connectedto ead neurode in the output layer.

network through the input layer, propagatesthrough the hidden layer and
emergesasthe output at the output layer. The output from every neurodeis
characterisedby the inputs applied to the neurode and the synaptic weights
that lead to the neurade. Thesesignalsare called functional becausethey
form the output signal, in addition to determining the output from ewery

neurode in the neural network.

Error signal: An error signalis the opposite of a functional signal. It is used
to re ne errors madeduring the learning process.Error signalsoriginate in
the output layer and badk-propagateto the input layer. They are so called
becausecalculation of the error signalat every neurode involvescomputation

of an error function in someform.

The processf learningin an arti cial neural network involvesadjusting the synap-
tic weights for inputs to ewvery neurade. One of the most commonlearning tech-
niquesis called Back-propagateasit involvesthe adjustmerts starting in the last
layer of the neural network. The following equation summarisesthe total weigh

changein the arti cial neural network:
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wii(n) = j(n)yi(n) (2.10)

The notations usedin the equation are as follows:

H

. n indicatesthe time step and usually implies a speci ¢ training cycle.

N

. 1 andj indicate neurodesin the network sud that neurodej isin alayerto

the right of neuradei.

w

w;i(n) is the changein weiglt (or correction) applied to the weiglt w;;(n)

(weight of the synaptic connectionthat links neurodesi and j).

4. s the learning-rate constant of the badk-propagatealgorithm.

ol

i (n) is the error introducedby neuradej at time stepn.

[o2]

. ¥i(n) is the output of neurodei at time stepn.

Updatesto the weights are carried out usingsteepestdescen minimisation through

the following formula (Rumelhart et al., 1986):

wi(n+ 1)=wi(n)  E(w(n) (2.12)

wherew;;(n + 1) is the weight at time stepn+1, w;;(n) is the weight at time step

n, is the learning constart, and E(w(n)) is the sum of squareerrorsin the
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weights at time step n. For quick corvergence the rate constart is usually set

to a value between0 and 1. Howe\er, it is known that this method is very slow.

A modi cation to the Badk-propagate algorithm, Resilient propagate was pro-
posedby Reidmiller and Braun (Riedmiller and Braun, 1993)in 1993. Unlike
Badk-propagate, Resiliert propagate (Rprop) implemens dynamic learning-rate
constarts during neural network training. Rprop has beenshavn to be far supe-
rior to other learning algorithms in terms of both speedand quality of learning

(Schimann et al., 1993).

A problem that has often been cited for the Badk-propagate algorithm is that
it getsstudk in local minima. Small changesto the synaptic weight could cause
an overall increasein the cost function (here, the negative overall error rate).
Howeer, there may also exist another set of synaptic weights where the overall
error rate is lower, causingthe algorithm to be caugh in local minima. This
problem has beenovercomein Resiliert propagatewhereinthe sizeof the weigh

changeis determinedby a weight-speci ¢ update value, given by:

() _

Wi

8
§ p () if E()=w; > 0
% + (n); if E(N)=w; <0 (2.12)

0; otherwise

where E(n)= w; denotesthe partial derivative of the sum-of-squareerror with
respect to the weight of the synaptic link connectingneurodesi and j. Updates

to the weights are carried out using the formula:
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+ i (n); if E(Wnij 1): E(Wnij 1) >0
wy" = i () fE@ L. E0 Do (219

VAN /AR C0

j (N 1); otherwise

Thereforeewery time the sign of the partial derivative of the weight (w;; ) changes
(implying that the last update was too big and the algorithm crosseda local
minimum value), the update-value j (n) is decreasedoy the value . On the
other hand, if the sign of the derivative is retained, then the update value is

increasedto acceleratecorvergence.

RProp requiresthe following parametersto be set:

1. Increasefactor * (Default) = 1.2.
2. Decreasdactor  (Default) = 0.5.
3. Initial update value o (Default) = 0.1.

4. Maximum weight step usedto prevert the weight from becomingtoo large

max (Default) = 50 (Riedmiller and Braun, 1993).

2.3 Intro duction to protein sequence analysis

After the completionof seweral genomesequencingrojects, sequencesf nearly 6.5

million proteins are available (http://www.ncbi.nim.nih.g  ov/RefSeq/). The
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most thorough way of annotating protein function is using biochemical analysis.
Howeer, this is impossibleon a genomicscaleconsideringthe costsinvolved in

annotating the function of nearly 6.5 million proteins.

Proteins that shaw signi cant amino acid sequencesimilarity tend to be homol-
ogousand have similar or related function. Sequenceanalysistools have been
deweloped with the goal of helping to identify homologousproteins. Someof the

applications of sequencenalysistoolsinclude:

Comparing protein sequenceso identify homologousproteins.
Tracing the ewlution of a protein.

Identifying consenred regionsin the sequencef a protein.

An important focus in Bioinformatics has beenthe dewlopmen of protein se-
guencecomparisonmethods. These may be broadly classi ed into one of three

types:

Pairwise sequencalignmert methods to comparetwo protein sequences.

Fast heuristic alignmert methods that comparea protein sequencewith a

databaseof protein sequences.

Pro le-based seartt methodsto comparea protein sequencevith a database

of protein sequences.

Multiple sequencealignmert methods to idertify regionsof conseration in

the sequence®f homologousproteins.
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2.3.1 Pairwise sequence alignmen t

Consideringthat there are only 20 amino acids, it is possiblethat two randomly
chosenproteins would have a certain number of similar setsof residuesertirely by
chance. Thesestatistics must be employed to identify signi cant relationships. A
requiremen in establishingregionsof similarity betweentwo proteins is to allow
insertionsor deletionsin the sequencessommonlyreferredto asindels. However,
the task of idertifying indelsto align two protein sequence®ptimally is di cult.

This is particularly the casewhenthe two proteins are remotely related and have

very low sequencesimilarity.

Needlemanand Wunsd (1970) deweloped an algorithm using dynamic program-
ming to align two protein sequencegautomatically. The procedureusesann m
matrix to scorethe idertities, or similarities, of residuesbeing compared,wheren
and m arethe number of amino acidsin the two protein sequencesThe main steps
involved in the Needlemanand Wunsd algorithm are descriked below (Orengoet

al., 2003):

1. Scoringthe matrix { The 2-dimensionalmatrix is initially populatedwith a
set of scoresto represen the idertities or similarities of residuesassaiated
with ead position in the matrix. In the simplest case,this can be either
1 or 0 where 1 would indicate identical residues(and therefore include all
residueson the diagonal) and O otherwise. Another way of populating the
scoress by using a substitution matrix sud asthe BLOSUM (Heniko and

Heniko, 1992)or Dayho matrix (Dayho et al., 1978). Theseindicate
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the probability of one residue substituting for another residuein a protein

over time.

. Accumulating the matrix { Oncethe scorefor ead cell in the 2D matrix has
beencomputed,the scoresare accunulated from the bottom right corner of
the matrix. The best scorefor a cell represetted by the coordinates (i,j) is

selectedusing the equation:

8
% Si+1 N

Si;j = Si:i + max % Si+ m;j +1 g (2-14)
T Siv J+m g

where Si41 j+1 indicates the scoreof a diagonal move from celli + 1 + 1,
Si+m;j +1 isthe scoreof amove from the j + 1™ row, and Sj.4 j+m ISthe score

of a move from the i + 1" column.

An o -diagonal move from either the j + 1" row or i + 1™ column, implies
the introduction of a gap in one of the sequences.Adding a gap to the

alignmert is penalisedby imposinga gap penalty scoreof the form:

g= 0+ ne (2.15)

whereo is the gap opening penalty, e is the gap extensionpenalty, and n is

the length of the gap.

. Tracingthe highestscoringpath { Oncethe scorefor every cell in the matrix
hasbeencalculated,a trace-bad is performedto nd the optimal alignmert
betweenthe two sequencesThis is doneby starting with the highest-scoring

cell near the top left corner and tracing the path through which the score
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was accunulated towards the bottom right corner of the matrix. An o -
diagonal move implies the introduction of a gap in the alignmert of one
of the sequences.This is in turn equivalert to an insertion in the other

sequence.

While the original dynamic programming method can be slow while aligning long
sequenceghe processmay be speededup by using a window for the matrix. This
implies that the scoreaccunulation and tracebadk is performed only within the
window and the length of insertions or deletionsis restricted by the size of the

window.

Smith and Waterman (1981) deweloped an alternative algorithm which iderti es
a local region of similarity (local alignmert) betweentwo protein sequencesThe

scorefor ead cell in the matrix when aligning sequencea and b is calculated by:

(2.16)
max(Sij+1) 9

whereS, i, j, k, m, and g have the samemeaningasin the Needleman-Winst
algorithm. When the scoreof a cell becomesnegative, then a scoreof zerois
assigned. The tracebadk step starts at the cell in the matrix with the highest
scoreand is terminated whenthe cumulative scorefalls to zero. While the highest

scorein the Needleman-Winsd algorithm is always on the outside the matrix, in
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the Smith-Waterman algorithm, it can appear anywherein the matrix.

2.3.2 Searches against a database of proteins

While dynamic programmingresultsin the mostreliable alignmert, the algorithms
are computationally expensiwe and are not practical whentrying to align a protein

sequencavith sequences alargedatabasewith the aim of identifying homologues
or nding regionsof local alignmert. Alternative methods have beendeweloped
using heuristics with the aim of improving the speed of seartes against large
databasesand identifying homologues. These methods help in the identi cation

of putative homologuesby assigningstatistical scores. The two main heuristic-
driven approadesto seart against databasesof proteins are FASTA (Pearson

and Lipman, 1988)and BLAST (Altschul et al., 1990).

FAST A and BLAST

The FASTA programdeweloped by Pearsonand Lipman (1988)is usedto compare
a protein sequencewith a databaseof protein sequences.lt usesthe conceptof

words (or tuples) to idertify regionsof similarity betweentwo proteins.

The working of the FASTA program is shavn in Figure 2.4. FASTA usesthe
conceptof wordswherea word represets a setof cortiguousresiduesn a sequence.
Normally, a word length of 2 residuesis usedfor proteins. The sequencéA to be

comparedagainst a databaseof sequencess rst split into words. In addition,
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Figure 2.4: Stepsinvolved in the FASTA seard program: (a) Find all identical
words in the query sequencgA) and sequencean the database(B) (b) All the
identical words are scoredusing a substitution matrix (c) ldentical words with
a scoreabove a threshold value are joined together using gapsand (d) The two
sequencesre aligned using the Smith-Waterman algorithm to obtain optimal
alignmert. Diagram taken from http://www.cbi.pku.edu.c  n/images/fa sta_
algorithm.gif
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to facilitate the comparisonof the query sequencewith ewery sequencen the

database,the following stepsare performed:

1. Every sequenceB in the databaseis split into its constituert words.

2. The wordsin A and B are comparedand all identical words betweenthe two

sequencesare identi ed and joined into cortiguous stretches

3. The best stretches are scoredusing a substitution matrix (suc as PAM)

and words with a scorebelow a threshold value are rejected.

4. All idertical wordswith scoresabove the threshold value are joined together

using gaps.

5. Smith-Watermandynamic programmingis usedto performalocal alignmen
betweenthe sequencessinga narrow window around the diagonaliderti ed

in the previoussteps. This provides an optimised score.

The use of dynamic programming allows the calculation of the overall similarity
measurebetween the two protein sequences.The signi cance of the similarity
measureis estimated by assessindhow frequertly the similarity scoreis obsened

when comparingthe query sequencegainsta databaseof unrelated sequences.

BLAST

BLAST (or gapped BLAST) (Altschul et al., 1990)performssimilar stepsto iden-
tify homologuesof a query sequencen a database. For a word of length 3, all

possiblewords that scoreabove a threshold value are found and thesewords are
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then identi ed in a database.The regionsspanningthe words are extendedwith-
out introducing gaps while the scoreremains above a threshold value. If su -

ciertly good hits are found, then a Smith-Waterman alignmert is performed. The
main practical di erence betweenBLAST and FASTA is that BLAST requiresthe
databaseto be indexed prior to searting. This is doneto increasethe speed of

seartes.

Statistical metho ds to assesssigni cance of a match

Sequencadertit y alone cannot establishwhether a hit is a true homologueof a
guery protein. For example,it has beenestablishedthat in the twilight zone of
25%sequenceédertit y or lower, it is impossibleto tell from sequencédertity alone
whether a hit is a remote homologue,or not a relative at all. This hasled to the
dewelopmen of statistical measuredo assesshe signi cance of a match during a

databaseseardt.

An assumptionin the early versionsof FASTA was that the distribution of pair-
wiseidertities betweenunrelated sequencesvas normal. Hence,initial versionsof
FASTA usedZ-scoresto report the likelihood of a match betweentwo sequences.
A Z-scoregives the number of standard deviations of a certain value from the
mean of a normal distribution. A high Z-scorevalue (e.g. 15) implied a high
probability of the hit being a homologueof the query protein. Howewer, subse-
guert work shaved that the distribution of pairwise idertities betweenunrelated
sequencess an extremevalue distribution (Mott, 1992;Altschul and Gish, 1996)

(SeeFigure 2.5 taken from Hobohm and Sander(1994)). The tail of the extreme
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Figure 2.5: Extreme value distribution of 200000sequencesvith lessthan 25%
sequenceadentit y randomly chosenfrom the PDB. Imagetakenfrom http://www.
biomedcentral.com/1471- 2105/8/388/fi gure/F9 (Dundaset al., 2007).

value distribution tapersmore slonvly comparedwith a normal distribution and is
directly proportional to the log of the frequencywith which a pairwise sequence
identit y scoreis obsened. The frequencyinformation canbe usedto estimatethe
probability of a hit being a true homologueof the query protein. This is reported
by the P-value For example,a P-value of 0.000limpliesthat 1in 10000sequences
giving this scoreor above would be an incorrect hit and not a true homologueof
the query sequence.This statistic is extendedto give an E-value (the expected
number of hits with a given scoreor above in a given database)which is cal-
culated by integrating the linear transformation of the tail of the extreme value
distribution curve. In general,low E-values(typically lessthan 0.01) indicate an

ewlutionary relationship betweena hit and the query protein (Pearson,1998).
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2.3.3 Prole-based search metho ds

A pro le is a mathematical represetation of a set of related sequencesFor every
position in the alignmert of a set of proteins, a pro le cortains the probability of

eat amino acid occurring at that position.

A pro le is constructedfrom a multiple sequencealignmert of three or morerelated
proteins. Pro les helpin idertifying the ewolutionary consenation of residueswith
speci ¢ properties at di erent positionsin the sequence.lf a speci ¢ amino acid
is highly consered at a certain position, then the amino acid receivwesa high score
for that position. At positionsthat are not well consered, all amino acidsreceiwe
low scores. In addition to pro les, there are other mathematical represetations
to scorethe conseration of residues. Theseinclude motifs (regular expressions
that represen patterns of a sequence. e.g. Prosite (Hulo et al.,, 2008)), and
Hidden Markov models (Sdneider et al., 1986; Gribskov et al., 1987; Staden,
1988; Tatusov et al., 1994;Yi and Lander, 1994;Bucher et al., 1996;Altschul et

al., 1997;Durbin, 1998).

An important pro le-based databaseseard procedureis the Position-Speci c It-
erative Basic Local Alignment and Seart Tool (PSI-BLAST). This program was
created by Altschul and colleagueqAltschul et al., 1997) as an extensionto the

BLAST program. The stepsinvolved in PSI-BLAST are as follows:

A protein sequence€P) of interestis comparedwith a databaseof sequences

by performinga BLAST seart betweenP and every sequencén the database.
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All hits with an E-value below a certain threshold are multiply aligned and

a pro le is constructedfrom the multiple alignmert.

In the next iteration, the pro le is usedto seart the databaseand idertify

new homologues.

After ead iteration when a new homologueis identied, a new prole is

constructedand further iterations are performedusingthe modi ed pro les.

The iterations are terminated when no new homologuesare identied or a

speci ed limit is readed.

In Chapter 3, pairwise sequencealignmerts have beenperformed using the pro-
gram ssarch33 to estimatethe degreeof humannessof antib odies. Chapter 4 de-
scribesa pro le-based method to idertify the start and end of framework regions
of antib odiesand apply numbering to antib ody sequencesFinally, Chapter 5 de-
scribesa method usingarti cial neural networks usingto predict the padking angle
at the interface of the light chain-heary chain variable region from a description
of the interface residues. However, since the available training data are limited

comparedwith the number of potential interface residues,a geneticalgorithm is
usedto pick the a subsetof interfaceresiduesin which the penalty function is the

performanceof the neural network, in order to selectan optimal set of interface

residues.
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Chapter 3

Assessing humanness of antib ody

sequences

Rodert (particularly mouse)moncoclonal antib odiesare widely usedin engineering
antib odiesfor the treatment of human diseasébecausehey may be producedwith
high binding a nit y to a wide range of antigens. The use of mousemoncoclonal
antib odiesin the human system gives enormousscoye for the treatment and di-
agnosisof se\eral diseases(Glennie and Johnson,2000). For example,Dyer et al.
(1989) have reported the e ectivenessof treating patients with Chronic Lympho-
cytic Leukaemia(CLL) with a rat antib ody, CAMPATH-1G. The administration
of the antib ody led to a signi cant clearanceof tumour cells in patients. How-
ewer, the promulgation of therapy using monoclonal antib odiesfrom other species
(typically mouseor rat) for human diseasehas beenslonv owing to someimpor-

tant problems. First, in most cases,the original e ector function of the rodert
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antib ody is not retained after introduction into the human system (Clark et al.,

1983)and second,rodert antib odiesare immunogenicin the human system.

This Human Anti-Mouse Antib ody (HAMA) response(Scro etal., 1985;Shawler
et al., 1985) or Anti-Antibody response (Glennie and Johnson, 2000) preverts
repetitive administration of the antib ody for treatment and may lead to anaphy-
lactic shack. There are two main ways in which one can approad this problem -
one could usefully human antib odies producedin phagelibraries (Winter et al.,
1994;Low et al., 1996) or transgenic mice (Bruggemannet al., 1991;Mendez et
al., 1997;Vaughanet al., 1998), or one could engineerrodert antib odies so that

they appear more human.

Se\eral strategiesnow exist which permit antib odiesto be engineeredn away sut
that they retain the speci city of the rodert antib odies while seeminglessalien
to the human immune system. They may broadly be classi ed as chimerization
(Neubergeret al., 1984;Boulianne et al., 1984) and humanization (Joneset al.,

1986;Riechmann et al., 1988).

Chimerization involves grafting the F, region of a rodert antib ody onto the con-
stant region of a human antib ody. Howewer, chimeric artib odies still cortain a
substartial rodent componert and may still lead to a HAMA response. In hu-
manization, the rodert cortent is minimised by grafting only the CDRs from the
rodent antibody onto a human framework. Generally a small number of other
framework residuesneedto be changedto the equivalert rodent residuein order
to restore binding. Rogusla et al. (1994) proposedan alternative technique of

‘resurfacing'wherethey replacesolert accessiblgesiduesin chimeric antib odies
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with human residues.

Clark (2000) hasalsoquestionedthe value of more elaborate humanization proto-
cols over chimerics. Data on approval rates for monoclonal antib odies (Reichert,

2001)show that 74%o0f chimericshave completedPhasel 1 trials with 24%o0f these
gaining FDA approval. In cortrast, only 34% of humanizedantib odies have com-
pleted Phaselll trials with 25% gaining FDA approval. Thus, overall, chimerics
have beenat least as successfult getting into the clinic as humanizedantib odies
and a metric for assessindqiumannessmay be of help in selectingrodert variable
domainsthat could be usede ectiv ely aschimericswithout the additional e ort of
humanization (alsoa patent mine eld). It may alsobe valuablein selectinghuman
frameworks for usein humanization. One can ask whether somerodert variable
domainsare more human-like than others, and indeed, whetherthey may be more
typically human than someunusualhuman antib odies. In onecase,a murine anti-

body hasbeenapproved for therapy (Ortho clone(OKT3), Ortho Biotech (Glennie

and Johnson,2000)).

The general question, therefore, is how typical an antib ody sequences of the
expressechuman repertoire. To answer this question, | have derived a "human-
ness'statistic. In the rst part, the meanand standard deviation of human and
mousesequenceare compared. Further, a Z-scorestatistic, to assessow typically
human an antib ody sequencas of the expressechuman repertoire, is descrited.
Human and mousevariable regionshave beencomparedwith the useof this statis-
tic and the analysis has beenextendedto the CDRs of light and heary chains.
Part of the work descriked in this chapter hasbeenpublishedin Abhinandan and

Martin  (2007).
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Type of Number of sequences
database Mouse Human
Lambda class 62 1003
Kappaclass 1292 645

Heavy chain 1562 1847

Table 3.1: Number of sequencesn ead datasetextracted from Kabat database.

3.1 Preparation of the dataset

Sequencesf antib ody variable regionswere extracted from the last public release
of the Kabat database(July 2000)using KabatMan (Martin, 1996). Sequences
were separatedon the basisof chain (light and heary chain), class(lambda and
kappa classfor light chains) and species(mouseand human). Table 3.1 givesthe
number of sequencessedin the analysis. The programssarch33from the FASTA
padkage (Pearsonand Lipman, 1988) was usedto extract pairwise identities be-
tweenthe antib ody sequencesGraphs were plotted using GNUPLOT (http://

www.gnuplot.org/ ) and GRACE (http://plasma- gate.weizmann.ac.il/ Grace/).

3.2 Comparing pairwise identities of human and

mouse sequences

The mean pairwise idertity x; for sequence in a databaseof m sequencess

calculated as:

i X
X
Xi = ‘7‘;’6' : (3.1)



wherex; is the pairwiseidertit y betweensequence andj. The standarddeviation

i for sequence in a databaseof m sequencess calculated as:

o<
—~
X
x
~
N

= = (3.2)

Xj Is the pairwise sequencedertity betweensequence and j, x; is the mean
pairwise idertity for sequence, and m is the number of human sequence# the

dataset.

In the rst step,| wanted to comparethe diversity of mouseand human antib ody
sequenceslin order to do this, | plotted the meanand standard deviation of ev-
ery mouseand human sequencevhen alignedwith every other mouseand human
sequencean the datasetrespectively. By comparingthe meanand standard devi-
ation of mouseand human sequences|, wanted to seeif the points would cluster
together depending on speciesand further, whether there were any commonchar-
acteristicsbetweenmouseand human antib odies. The algorithm for this is shovn

in Figure 3.1.

Every mousesequencdrom a speci ¢ datasetwas taken and queried against the
databaseof mousesequencesising ssarch33 A very high e-value cuto of 100000
was usedto ensurethat pairwise idertities betweenewery pair of sequencesvere
returned by ssarch33and consideredn the calculations. From the setof pairwise
identities, a meanpairwiseidertit y was calculatedasshown in equation3.1. From

the individual pairwiseidentities and meansequenceédertit y, a standard deviation
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Calculate pairwise
identity between
every pair of
mouse sequences

v

Calculate mean
pairwise identity and
standard deviation (SD) for
every mouse sequence

v

Calculate pairwise
identity between
every pair of
human sequences

v

Calculate mean
pairwise identity and
SD for every
human sequence

v

Plot the distribution of SD
against mean pairwise
identity for human
and mouse sequences

End

Figure 3.1: Algorithm to compute the mean and standard deviation for ewery
sequencean the dataset (Table 3.1).
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was calculated as showvn in equation 3.2. All the above stepswere repeated for
the human sequenceand the distribution of standard deviation againstthe mean
percenage idertity for the mouseand human sequencesvere plotted separately
Thesedistributions were plotted for eat dataset (heavy chain and lambda and

kappa classfor the light chain).

Figure 3.2 givesthe plot of standard deviation vs. mean pairwise idertity for the
mouseand human antib ody sequenceslt is clear from the graphsthat the data
points for the human and mouseartib odies form distinct clusters. In the case
of lambda classlight chains, there is a clear separation between the mouseand
the human plots. While the human antib odies tend to have a mean percenage
identit y between40 and 70%and a wide rangeof standard deviations, the plot for
the mousesequenceshowns that the mouselambda light chains have high mean
percertage idertit y while showving lessersequencaliversity. The graph for kappa
classlight chains shaws that although the data points for the mouseand human
sequencearedistinct, a few points overlap. It may alsobe obsened from the plot
that the mousesequenceare more diversethan the human sequencesvhich is in
slight cortrast with the lambda classwherethe human antib odiesare morediverse
than their murine courterparts. The graph for the heary chains shows a virtually
completeoverlap of both murine and human antib odies. This alsoestablisheghat

both human and murine heary chains are equally diverse.
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Figure 3.2: Plot of the standard deviation vs. the mean percenage idertity of
mouseand human sequences (a) Light chain lambda class(b) Light chain kappa
classand (c) Heavy chain.

95



3.3 A statistic to assess humanness' of antib ody

sequences

In the next section,| analysedsequencesf antib odiesbelongingto variouschains/classes
in human and mouseto createa Z-scoremetric basedon percenage sequenceden-
tity betweenantib ody sequencesThis shaws distinct di erences betweenhuman
and mousesequencesBasedon mean sequenceadentity and standard deviation,
| have calculated Z-scoresfor datasetsof antib ody sequencextracted from the
Kabat database.l have appliedthe analysisto a setof humanizedand chimeric an-
tib odiesincluding a number of sequencewheredata are available on anti-antib ody
responses,and to human germline sequences.The aim was to seewhether this
approad may aid in the selectionof more suitable mousevariable domains for

antib ody engineeringto renderthem more human.

3.3.1 Analysis of pairwise sequence identities

Initially , every human variable domain sequencevastaken and comparedwith the
variable domain of every other human antib ody in the respective dataset (light
or heavy chain, lambda or kappa classin the caseof light chain sequences)The
program sserch33 was usedto generatepairwise alignmerts and the pairwise se-
guenceidentities were recorded. The sameprocedurewas repeatedfor the mouse
sequencese. every mousesequenceavas comparedwith every human sequencen
the respective dataset and the pairwise idertities were recorded. The frequency

distribution of the pairwise idertities of the human and mouse sequencesvere
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then plotted together. It must be noted that there are signi cant di erences be-
tweenthe number of murine and human antib odiesin the datasetfor lambda and
kappa classlight chains. It was therefore decidedto usethe normalised percert-
agefrequency The normalisedfrequencyis calculated by dividing the frequency
by the total number of pairwise idertities for the respective comparison. Fig-
ure 3.3 shaws the frequencydistribution of pairwise idertities for human/human
and mouse/luman betweenthe mouseand human light/heavy chain sequences.
The graphsshow that both mouseand human distributions are near-normaland
they share peaksaround 50% sequencedertity when comparedwith human se-

quences.

Similarly, a graphwasplotted to examinethe lambda and kappalight chain classes
separately(Figure 3.4). Theseplots separatethe light chain classeswith a more
clear distinction betweenthe mouseand human distributions. The histograms
are near normal distributions with the human kappa light chains (Figure 3.4b)
appearingto shaw two overlapping sub-classesThe humanlambda classsequences
asseenin Figure 3.4ahave se\eral peaks. Howeer, the lowest human peak, which
occursat about 50%sequencedertit y, is still considerablyhigherthan the murine

peak, which occursat about 41% sequencedertit y.

3.3.2 Analysis of mean sequence identities

This initial analysisprovides a histogram of sequencedertities for ead antib ody
analysed. In the secondstage,| replacedthis with a meansequencedentity suc

that ead antib ody was represetted by a single value. All antib ody sequences
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belonging to a given dataset were aligned with human sequence®f the corre-
sponding chain/class as above. The pairwiseidertity betweenevery non-idertical
pair of sequencesvas then obtained. By calculating the mean sequencedertit y
of a sequencescoredagainst the set of human sequences| obtain a value which
represets how typical a sequences of the human repertoire. | call this the “raw

humanness'.

For eadh mouseantib ody sequencei, the meanis calculated as:

X
i = . Pij =N (33)

while the meansequencadertity for every human antib ody is calculated as:

X
i = Py =(N 1) (3.4)
j=1j6i

where N is the number of sequencesn the respective human dataset and Pj is
the pairwise sequencedertit y betweenthe i'th and the j'th sequencen the query
and target datasetrespectively. The secondequationusesN 1 sinceboth query
and target databaseare the sameand the human probe sequences not compared

againstitself.

A "meanraw humanness'( ) can be calculatedfor ead dataset:
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Organism Light chain Heavy chain Light chain  Light chain
lambda class kappaclass

Mouse 50.61 49.85 42.79 58.84

Human 55.21 55.01 59.93 67.57

Table 3.2: Mean raw humannesy ) for eat dataset.

= . i:NI (35)

whereM is the number of sequence# the probe dataset (mouseor human).

Table 3.2 lists the calculated meansfor ead dataset of sequence$or human and
mousewith respect to human. As expected,there are marked di erences between
the human and murine antib ody datasets: the human sequenceshow higher av-

eragesequencadertit y than the murine sequences.

3.3.3 Z-Score analysis

Having obtained individual raw humannessscores( ;) and mean scoresfor eah
human dataset (human , Table 3.2), Z-scoreswere calculated as a form of nor-
malisation. A Z-scoreindicates how marny standard deviations above or below
the mean a certain value is. Z-scoresfor both the mouseand human sequences
were calculated with respect to the appropriate human distribution to assesshe
degreeof divergenceof eat sequencedrom the human average. For the human
sequencestheseZ-scoresare approximately normally distributed with a mean of
zero. The Z-scorewas de ned asthe nal measureof how typical a sequencas of

the human repertoire. For simplicity, this was termed the "humanness'(although
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every human sequencas clearly 100%human). Thus a Z-scoreof zerorepresets

a sequencewhich shows averagesimilarity to the repertoire of human sequences.
Positive Z-scoresrepreseh sequenceshich, on average, shav higher sequence
identity with other human sequencesnd negative Z-scoresrepreseh sequences

with lesstypically human character.

The standard deviation, is calculatedas:

(i )*=M (3.6)

where ; is the ‘raw humanness'of an individual sequenceand is the meanraw

humannessof the human dataset.

Finally, the Z-scoreof eat sequencevas calculated as:

Zi= (i )= (3.7

Z-scoreswere calculatedfor every dataset of the mouseand human sequenceand
the frequencydistribution of the two were overlaid, as shovn in Figures 3.5 and
3.6. The two plots show distinct di erences betweenthe mouseand the human
distributions. Figure 3.6aappearsslightly skewed asthe number of mouselambda
classsequencess lessthan 10% of the number of human lambda classsequences

(seeTable 3.1). Although the mouselambda classsequencesre typically non-
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human, it can be seenthat in general,there are signi cant overlaps betweenthe
mouseand the human plots. This indicatesthat many mousesequencesre more

typically human than somehuman sequences.

3.3.4 Assessment of humanized antib odies

The methodology was applied to a small selectionof humanizedantib odies. Two
papersreporting humanization of murine antib odieswereidenti ed from literature
(Yazakiet al., 2004;Rogusla et al., 1994). The humannessof the original murine

antib ody and the humanizedarntib ody were calculated and compared.

Yazakietal. (2004)have reported the humanization of T84.66, a murine antib ody
that binds with high a nit y to the carcinoenbyonic antigen (CEA) (Wageneret
al., 1983). They madetwo humanizedantib odiesM5A and M5B di ering only in
the sequenc®f the heavy chain. Roguslkaetal. (1994)have employed a technique
calledresurfacingwherehuman surfaceresiduesare grafted onto a murine variable
domain. Two ‘resurfaced'antib odies N901 and B4 have been made using this

procedure.

Table 3.3 givesthe humannessscoresfor the original murine and the humanized
antib odies. From the table, it can be obsened that the humannessvalues for
the humanized antib odies are clearly higher than those of the original murine
donor antib odies. It must also be highlighted that in the caseof N901 produced
by resurfacing, only two residuesin the murine antib odies were replaced with

their human courterparts in the light chain. Despite this, there is a small, yet
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HumannessZ-score( )
Murine Humanized Human
T84.66 Light -1.847 -1.152
Heary -1.161 0.836(M5A)
0.464(M5B)
N901 Light -1.929 -1.775
Heary 0.110 0.728
B4 Light -2.055 -1.762
Heary -1.686 -1.420
HPC4 Light -2.246 0.187 1.390
Heary -2.413 0.135 1.875

Table 3.3: Results of applying the Z-scoreanalysisto humanizedantib odies. All
light chain scoresarein comparisonwith human light chain kappa classsequences.
Antib odies humanizedby the resurfacingmethod of Rogusla et al. (1994). YThe
human light chain sequencewas the consensudor light chain  subgroup! and

the heavy chain wasthe consensugor human heavy chain subgrouplll.

appreciableincreasein the humannessscoreestablishingthe method's sensitivity
evento small changesn sequenceThis alsoshowvsthat the humanresidueschosen
by Rogusla are generallytypical of human antib odiesand not just a small subset
of human sequences.It must howewer be noted that the humannessscoresof
the humanized T82.66 are higher than those of the resurfacedantib odies as the
resurfacedantib odies are basedon chimeric rodert variable domainsrather than

human variable domains.

3.3.5 Analysis of humanness of human imm unoglobulin

germline genes

The method is also capable of idertifying that humanized antib odies are “less
human' than the original human acceptorsequence O'Connor et al. (1998) have

reported the useof consensusequenceashuman acceptors,selectinga consensus
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Family VBaseGenename Humanness Family VBaseGenename Humanness
V1 13-7(A) la 0.40 V 3 11-73e -0.17
V1 14-7(A) le 1.17 VvV 3 11-73m 0.50
V1 13-7(A) 1c 0.90 VvV 3 11-72-19 0.32
V1 13-7(A) 19 0.89 V 4 12-114c -3.27
V1 13-7(A)1b 0.92 V 4  12-114a -2.28
V 2  14-7(A) 2c 1.09 V 4 12-114b -2.62
vV 2 14-7(A) 2e 1.27 V 5 14-115e -1.70
VvV 2 14-7(A) 2a2 1.02 vV 5 14-115c -1.91
VvV 2 14-7(A) 2d 1.24 vV 5 14-115b -2.38
vV 2 14-7(A) 2b2 0.92 V 6 13-7(B) 6a -0.34
V 3 11-73r 0.67 V 7 14-7(B) 7a -2.39
V 3  11-73] 0.46 V 7 14-7(B) 7b -2.26
VvV 3 11-73p 0.44 VvV 8 14-7(B) 8a -1.27
VvV 3 11-73a 0.04 vV 9 12-129a -3.28
vV 3  11-73 0.19 V 10 13-7(C)10a -1.19
V 3 11-73h 0.42

Table 3.4: Humannessscoresfor the lambda classgermline genes.

human subgroupV | light chain and VH-111 family heavry chain. Similarly, Hwang

et al. (2005) selectedgermline-expressedgsequencesnost similar to the mouse

sequencethe rationale being that germline sequencesvould be expected to be

non-immunogenic.

It is clearthat somegermlinesequencesend to be usedmore frequertly than oth-

ers so, it was decidedto examinethe "humanness'of human germline sequences.

The amino-acid sequencesf human V-region germline geneswere extracted from

VBase(http://vbase.mrc-

cpe.cam.ac.uk /) andwerequeriedagainstthe database

of expressechuman antib odiesto obtain their humannessscores.Table 3.7 gives

the number of germline genesfor

light chains, and heavy chain germline

families. Figure 3.7 givesthe plot of humannessscoredistributions of the germline

genesshown asvertical lines. The humannessscoresof individual germline genes

are givenin Tables3.4{3.6.



Heavy chain

18 -

16 -

14 +

12

10 -

Frequency of occurrence

Z-Scores

(a) Heavy chain

Light chain lambda class
12

T T T T T T T T T
Germiine genef ——
tmaf} -
10 b
8L B

| (\ﬂn. |

Frequency of occurrence
=)

L

Z-Scores

(b) Light chain lambda class

Light chain kappa class
16

14

12 |

10

Frequency of occurrence
®

| ‘mm J Mnmﬂ

Z-Scores

0 1 2

(c) Light chain kappa class
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humannessscoresfor expressechuman sequences.
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Family VBaseGenename Humanness Family VBaseGenename Humanness
Vol 2-1-(1) 012 1.20 V1l 31-(1)01 -1.79
Vo 2-1-(1) 02 1.20 Vol 4-1-(1) A17 -1.97
Vo 2-1-(1) 018 0.56 VIl 4-1-(1) A1 -2.09
Vi 2-1-(1) O8 0.56 Vol 4-1-(1) A18 -1.71
Vo 2-1-(U) A20 0.78 VIl 4-1-(1)A2 -1.77
VoI 2-1-(1) A30 0.34 VIl 4-1-(1)A19 -1.40
VoI 2-1-(1) L14 -0.19 VIl 4-1-(1)A3 -1.40
Vi 2-1-(1) L1 0.89 VoIl 4-1-(1) A23 -2.37
VI 2-1-(1)L15 0.75 VvV I 6-1-(1) A27 1.05
VI 2-1-(1) L4 1.02 V Il 6-1-(1) All 0.87
VoI 2-1-(1) L18 1.02 Vol 2-1-(1)L2 0.94
VI 2-1-(1) L5 0.84 VvV I 2-1-(1)L16 0.94
VI 2-1-(1)L19 0.84 VI 2-1-(Q)Le6 1.04
Vi 2-1-(1) L8 0.86 VI 2-1-(U) L20 0.98
VI 2-1-(1) L23 0.36 V Il 6-1-(1) L25 1.00
Vo 2-1-(1) L9 0.69 V IV 3-1-(1)B3 0.07
VoI U-1-(1) L24 0.54 VvV 21-(1)B2 -3.67
VoI 2-1-(1) L11 0.68 vV VI 2-1-(1) A26 -1.28
VI 2-1-(U) L12 1.04 vV VI 2-1-(1) Al0 -1.28
VoI 3-1-(1) 011 -1.79 vV VI 2-1-(1)Al4 -1.12

Table 3.5: Humannessscoresfor the lambda classgermline genes

In general,it canbe seenthat the germlinegenescorrespnd to peaksin the distri-

butions. Somegermline genesare moretypical of the expressechuman repertoire

than someothers. Ead germline falls within a cluster of humannessscoresre-

ecting the relative frequencywith which they are usedin the expressechuman

repertoire; somefamilies are also seento overlap. The VH-111, V 1II (and some

of V I) andV 2 (and someV 1) are families that have very high Z-scoresand

thus are likely to be the germline families from which the high-scoringexpressed

human sequencesire derived.

Choosing germline sequencess the basisfor humanization from one of the high-

scoring sequencess likely to be more e ective than choosing germline sequences

from oneof the low scoringsequencesThis is becausea large number of expressed



Family VBaseGenename Humanness Family VBaseGenename Humanness

VH-I 1-31-02 0.04 VH-111  1-33-43 1.44
VH-I 1-31-03 0.12 VH-111  1-33-48 1.81
VH-I 1-31-08 -0.34 VH-111 1-U 3-49 0.89
VH-I 1-21-18 0.00 VH-I1l 1-13-53 1.87
VH-I 1-U 1-24 -0.50 VH-11I  1-33-64 1.76
VH-I 1-31-45 -0.84 VH-111  1-13-66 2.18
VH-I 1-31-46 0.38 VH-11  1-43-72 1.19
VH-I 1-31-58 -0.64 VH-I11  1-43-73 1.10
VH-I 1-21-69 0.15 VH-111  1-33-74 1.94
VH-I 1-21-e 0.32 VH-I1l  1-63-d 1.24
VH-I 1-21-f -0.36 VH-IV  2-1/1-1 4-04 0.44
VH-I1  3-1/2-1 2-05 -2.12 VH-IV  2-14-28 0.14
VH-I1  3-12-26 -1.83 VH-IV  3-14-30.1 0.35
VH-Il  3-12-70 -1.79 VH-IV  3-14-30.2 0.11
VH-I11  1-33-07 1.88 VH-IV  3-14-30.4 0.38
VH-I11  1-33-09 1.36 VH-IV ~ 3-14-31 0.35
VH-I11  1-33-11 1.99 VH-IV  1-14-34 -0.01
VH-I11  1-13-13 1.26 VH-IV ~ 3-14-39 0.12
VH-I11  1-U 3-15 1.48 VH-IV  1-14-59 0.52
VH-111  1-33-20 1.37 VH-IV  3-14-61 0.38
VH-I11  1-33-21 1.89 VH-IV  2-14-b 0.50
VH-I11  1-33-23 2.17 VH-V 1-25-51 0.18
VH-I11  1-33-30 2.07 VH-V 1-25-a 0.32
VH-111 1-33-30.3 2.20 VH-VI  3-56-01 -1.00
VH-111  1-33-30.5 2.07 VH-VI1 1-27-4.1 -0.12
VH-111  1-33-33 2.15

Table 3.6: Humannessscoresfor the heavy chain germline genes.
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VBase GeneFamily  Number

Light chain { class

VL1

VL2

VL3

VL4

VL5

VL6

VL7

VL8

VL9

VL10

Light chain { class

VK1 1

VK2 9

VK3 7
1
1
3

P RPFEPNEFEWWOOO o

VK4

VK5

VK6

Heavy chain

VH1 11
VH2 3
VH3 22
VH4 11
VH5 2
VHG6 1
VH7 1

Table 3.7: Number of V-region genesin Lambda and Kappa classlight chain and
heary chain germline families.
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Antib ody AAR

Light chain

Heavy chain Notes

Humanized
Zenapax 34%
HuBrE-3 14%
Synagis 1%
Herceptin 0.1%
Hu-A33 17%
Xolair 0.1%

Campath-1H 1.9%
Chimeric

In iximab 61%
Rituximab 0%
ch14.18 0%
U36 40%
Fully human
Humira 12%

-0.129
-1.811
-0.497
0.462

-0.401
0.309

-0.009

-2.237
-1.813
-1.829
0.135

0.874

-0.136
0.252
-1.708
0.965
0.850
0.657
-0.564

-0.684
-1.350
-1.605
1.308

0.886

Immuno-suppressanaction

Patients may be immuno-suppressed
Neonatal

Patients may be immuno-suppressed
Patients may be immuno-suppressed

Patients may be immuno-suppressed
Immuno-suppresah action

Patients may be immuno-suppressed
Patients may be immuno-suppressed

Patients may be immuno-suppressed

Immuno-suppressanaction

Table 3.8: Anti-antib ody response (AAR, expressedas a perceriage of patients
data taken from Hwang and Foote (2005) and from full
prescribinginformation of antib odiesapproved for therapy) and humannessscores
for seven humanizedand four chimeric antib odies. All light chains were of the

who shoved a response|

class.

sequencesimilar to the high-scoringgermlinesis obsenedin the human repertoire

and thesemay belesslikely to be immunogenic. Highly usedframeworks will have

been seen'by the immune systemin the cortext of di erent CDR regions(after

somatic hypermutation). This will make it likely that peptidesderived from these

antib odies have previously beenseenand tolerated by the immune system. It is

not known why somegermline sequencesre used more frequertly than others,

but one possibility is that variations on the lesscommonly obsened germlines

leadsto higherimmunogenicily and B-cells producing theseantib odiesare rapidly

eliminated from the body.
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Antib ody Referencefor

name sequence

In iximab USP 6284471
Rituximab 2B8

ch14.18 USP 6969517
Re-labelled Chimeric U36 USP 6972324
Zenapax (Queenet al., 1989)
Hu-BrE-3 (Couto et al., 1994)
Synagis (Johnsonet al., 1997)
Herceptin (Carter et al., 1992)
Humira USP 6509015
Campath-1H (Jameset al., 1999)
Hu-A33 USP 5773001

Table 3.9: Table listing clinical antib odies and the referencescortaining their
sequenceAbbreviation USP standsfor US Patert.

3.3.6 Correlating imm unogenicit y with humanness

| further investigatedthe potential of the humannessscoreas a predictor of anti-
antib ody response(AAR). Recerly, Hwang and Foote (2005) reviewed reported
AAR data against murine, chimeric and humanizedantib odies and classi ed the
responsesas negligible (< 2%), tolerable (2{15%) and marked (> 15%). As ex-
pected, they found that the changefrom mouseto chimeric antib odies leadsto
the greatestreduction in immunogenicit, while humanization leadsto a further
decrease. Their paper provides a summary table which reports the percenage
of patients su ering an arti-antib ody response. | attempted to obtain sequence
data for the antib odies descrited. Despite seartes of the original literature and
patert data (both from the original patents and the patent sequencedata avail-
ablethrough the SRSsener at the EBI, http://srs.ebi.ac.uk/ , and the IMGT
list of monoclonal antib odies with clinical indications, http://imgt.cines.fr/

textes/IMGTrepertoire/Gen esClini cal/ monalon ala ntib odies/), it proveddif-
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cult to obtain sequencealata for more than a handful of the antib odies. A list of

clinical antib odies and the sourceof their sequencess shovn in Table 3.9.

These sequencesnere tested using the humannessassessménand humanness
scoresare listed in Table 3.8. The results are very di cult to interpret asthere
are a number of other factors that may cortribute to the AAR. In particular, as
shown in the table, patients may be immuno-compromisedas the result of other
treatments (many of the antib odiesare usedin cancertherapy) and the antib ody

itself may have an immuno-suppressan action. Nonetheless,in the caseof the

humanizedantib odiesit can be seenthat the sequencewith the best humanness
scores(Herceptin) resultsin virtually no AAR while the worst individual human-
nessscore(ln iximab) resultsin the worst AAR. To investigate the relationship
between humannessand AAR further, | decidedto plot the variation of AAR

againstthe following variables:

Light chain humannessscore.

Heavy chain humannessscore.

Mean humannessscoreof the light and heary chain.

Maximum humannessscorebetweenthe light and heavy chain.

Minimum humannessscorebetweenthe light and heary chain.

The graphs for these variations are shovn in Figures 3.8 and 3.9. Averaging
the humannessscoresfor light and heary chains for eatc humanized antib ody

and calculating the Pearson'scorrelation coe cient with AAR valuesshowved no
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Pearson'scorrelation

coe cient (r)
Type Humanized Chimeric
Light -0.290 0.144
Heary 0.105 0.576
Mean -0.090 0.408
Min -0.029 0.144
Max  -0.169 0.577

Table 3.10: Correlation coe cient betweenthe AAR and humannessscoresof the
antib odies approved for therapy. A negative correlation coe cient implies that
the AAR decreasessthe humannessscoreincreases.

signi cant correlation (R=-0.09). In cortrast, amongstthe chimeric antib odies,
the mosttypically human antib ody, U36 (an anti-CD44 v6-domainantib ody) leads
to the secondhighest AAR and surprisingly, there is a positive correlation (r =

0:50). Table 3.10 summarisesthe correlation coe cien ts between AAR and the
di erent categoriesof Z-scoresdescriked earlier. Clearly there is a very limited

amourt of data and the interpretation of the data is complex. From preliminary
investigations,there doesnot appearto be a direct relationship betweenAAR and

Humannessscoresof the therapeutic artib odies (Table 3.8.

Surprisingly Humira, the rst “fully human' antib ody (generatedby phagedisplay)

to be approved for usein therapy is not any lessimmunogenicthan the humanized
antib odies. Immunogenicily data indicate that 12% (Hwang and Foote, 2005) of
peoplewho wererepeatedly injected with the drug without an adjuvant deweloped
neutralising antib odies. This was lower (1%) when Humira wasadministeredwith

Methotrexate. Humannessscoresor Humira were0.874(Light chain Kappa class)
and 0.886(Heavy chain). While thesescoresare quite high, there are similar (and

in somecaseshigher) scoresamongstthe humanizedand chimeric antib odies.
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scores.
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In conclusion,while (with the limited data available) there doesnot appearto bea
correlation betweenhumannessand AAR, asstated above, it is worth noting that
the least human individual chain alsoled to the worst AAR while the antib ody

with the highesthumannesded to the lowest AAR.

3.4 Assessing humanness of antib ody CDRs

While it is largely assumedthat human antib odies are not immunogenic,it has
beenshown that this is not necessarilythe case(Macias et al., 1999). As Clark
(2000) points out, every antib ody hasa unique idiotype encaled by the hypervari-
ableregionsand evenfully human antib odiesmay elicit an immuneresponse. This
"HAHA' (Human Anti-Human Antib ody) responseis a conceptfamiliar to immu-
nologists as the "network hypothesis'in which ewery antib ody provokes another

anti-idiot ypic antib ody to regulate the immune response(Jerne, 1974).

Basedon this assumption, | decidedto investigate the humannessof the CDRs
alonein a similar way (the work described above included both the framework
regionsand the CDRs). Sequence®f antib ody CDRs were extracted from the
July 2000releaseof the Kabat databaseusing KabatMan and the sequencesvere
split into 3 sets basedon chain/class (heavy, lambda, and kappa) and species
(murine and human). Humannessof the CDRs was ewaluated in two ways: rst,

the individual CDRs of murine and human arntib odies were compared. In the
secondstage, the three CDRs for ead dataset were concatenatedand compared

together using ssarch33as above to calculate pairwise idertities.
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(a) CDR-L1

(b) CDR-L2

(c) CDR-L3

Figure 3.10: Z-scoredistribution for CDRs in the lambda classlight chain (a)
CDR-L1 (b) CDR-L2 (c) CDR-L3.
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(a) CDR-L1

(b) CDR-L2

(c) CDR-L3

Figure 3.11: Z-scoredistribution for CDRsin the kappaclasslight chain (a) CDR-
L1 (b) CDR-L2 (c) CDR-L3.
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(a) CDR-L1

(b) CDR-H2

(c) CDR-H3

Figure 3.12: Z-scoredistribution for CDRs in the heavy chains. (a) CDR-H1 (b)
CDR-H2 (c) CDR-H3.
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The plots comparingthe Z-Scoresof the individual murine CDRs with the human
CDRs are shavn in Figures 3.10, 3.11 and 3.12 for the light chain lambda and
kappa classesand the heavy chain respectively. It may be seenthat the human
and mouseplots overlap almost completelyin all the CDRs suggestingthat they
arevery similar in both species.While calculating humannesspercenage idertit y
must be calculated over long stretches of sequenceas short sequencealignmerts
may be incorrect and skew the measureof percenage identity. As CDRs vary
considerablyin length (seeTable 4.9 on page 154) and it was therefore decided
that humannesofthe CDRswould bereassessebly concatenatingtheir sequences

instead of treating them independerily.

The plots for the concatenatedCDRs for ead dataset are shovn in Figure 3.13.
From the plots, it is clear that there is almost a complete overlap between the
mouseand human plots. From the individual CDR plots and the concatenated
plots, it can be seenthat the mouseand human CDRs are not very di erent and

that the main di erences appearto be encaled in the framework regions.

3.5 Discussions and conclusions

The use of Z-scoresallows a normalised "humanness'scoreto be assignedto an
antib ody sequenceWhile, by de nition, it is the casethat every human sequence
is 100% human, this analysisshaws very clearly that somehuman sequencesre
more typical of the human repertoire (as sampledin the Kabat database)than

other sequencesThe fact that di erencesin "humannesscan be detectedbetween
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(a) Lambda classlight chain

(b) Kappa classlight chain

(c) Heavy chain

Figure 3.13: Z-scoredistribution for the concatenatedCDRs (a) Lambda class
light chain (b) Kappa classlight chain (c) Heavy chains.
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humanizedantib odiesand the human acceptorsequencessedin the humanization
indicates that the CDRs play an important role in the overall humannessscore.
Nonetheless,Jooking at the CDRs out of context of the framework shows little

di erence in humannessof mouseand human CDRs.

Of coursethere are many other factorsthat may cortribute to immunogenicity. For
example,the nature of the target, whetherit is endacytosedor not, the aggregation
state and formulation of the antib ody, the patient's genetic badkground, disease
state, etc. Howewer, the notion of typically human antib odies has beenexploited
elsewhere.As descriled above, an approat to humanization had beendescrited
by Hwang et al. (2005)which involvesselectinggermline-expressedequencemost
similar to a human germlinesequenceUsingthe repertoire of expressedequences

rather than the germlineprovidesa morerealistic sampleof circulating antib odies.

Thus while there may be no meansto abolish an anti-idiot ypic anti-antib ody re-
sponsecompletely(giventhat mouseand human CDRs are very similar), measures
can be taken to minimise the likelihood of the framework leadingto a response.
It is reasonableto assumethat an antib ody which is more typical of the human
repertoire will be lesslikely to be immunogenicthan a sequenceavhich is lesstyp-
ical. Analysis indicates that a signi cant number of mouseartib odies are more

human-like than many human antib odies.

In arecent Phasel drug trial, six healthy volunteerswere injected with a human-
ized anti-CD28 antib ody, TGN1412 (Hopkin, 2006). This led to a massie and
life-threatening immune responsein all six subjects. Initially it was not known

whether this was the result of severe anaphylactic shack inducedby TGN1412 it-
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self, or whether the mode of action of the antib ody in binding to CD28 induceda
“cytokine storm'. The TGN1412 sequenceavas obtained from US Patent Applica-
tion 2006000845and shoved humannessscoresof 0.48 (light) and -0.85 (heavy).
The light chain has a similar humannessscoreto the best humanized antib ody
showvn in Table 3.8 (Herceptin), while the heavry chain is much higher than the
scorefor Synagis. Both of theseartib odies are very well tolerated. Thus, before
more information on the mode of action of TGN1412 becameavailable, we were
able to concludethat it was unlikely that the immune response seenin the six

volunteerswas a reaction to the humanizedarntib ody itself.

Our analysisof correlationsbetweenhumannesscoresand anti-antib ody responses
(Table 3.8) was very limited becausending sequencedata for antib odies where
AAR data are available was a near-impossibletask. While the small sampleis
probably statistically insigni cant, it appearsthat humannessscore does shov
somecorrelation with reducedAAR amongstthe humanizedantib odies, but not
amongstthe chimerics. Clearly there is a lot more involved in immunogenicity
than the simple similarity to the human repertoire and it seemdikely that there
are speci ¢ featureswithin somemousesequenceshat renderthem visible to the
human immune system. | therefore analysedall the sequencesn Table 3.8 with
the T-cell epitope prediction sener, SYFPEITHI (Rammenseeet al., 1999), to
discover whether antib odiesleadingto a marked anti-antib ody responseshaved a
higher concenration of likely T-cell epitopes. In fact, no di erences were found

betweenthe immunogenicand non-immunogenicartib odies.

The processof humanization has usually involved the selectionof a human an-

tib ody that has a high sequenceddentity with the murine donor antib ody from
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which the CDR sequencearetaken (Queenet al., 1989). This is doneto maximise
the chancesof obtaining good binding. Howeer, in somecasessud humanized
antib odiesstill show signi cant AAR. As descriked above, an alternative strategy
has beento usegermline sequencegHwang et al., 2005),or consensusequences
derivedfrom germlinesequence§1998;1992)asthe human acceptors.The e cacy
of using consensusiuman sequences obtaining good binding hasbeencompared
with selectingthe most similar human sequence (Kolbinger et al., 1993;Sato et
al., 1994)and thesestudiesshaw that, while both methods give similar results, the
use of the human acceptor sequencewith the best sequenceddentity gives some-
what better binding. There hasbeenno direct comparisonof the e cacy of the
methods in avoiding AAR. The strategy of using (consensus)yermline sequences
as acceptorsis designedto maximise the human nature of the acceptorsequence
in the hope that this will be lesslikely to elicit an anti-antib ody response, even
if more mousedonor residuesneedto be introducedinto the framework to obtain
good binding. Our analysisof germline sequencesndicatesthat certain germline
familiesand speci ¢ geneswithin thesefamilies giver higher humannessscoresand

are therefore more represetativ e of obsened expressecantib odies.

As descriled above, selectinga human acceptor framework on the basis of se-
guencesimilarity with the mousedonor may give better binding than selecting
a (consensus)germline sequence. Of course,there is a trade-o between good
binding and AAR. Poorer binding may meanthat more antib ody hasto be ad-
ministered thus increasingthe amourt of AAR. Germline, or expressedhuman
antib odieswith high positive Z-scoresnay be good candidatesfor useasacceptor
sequence# humanization to minimise the chanceof AAR. It may be possibleto

selecthuman acceptorsequencesvhich balancesequencedertit y with the mouse
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donor (to optimise binding) and the humannessscore(to reduceAAR).

Onepossibleproblemwith the method is that humannessasbeenewaluated based
on averagesimilarity to the human repertoire as sampledby the Kabat database.
It could therefore be biasedsimply by the selectionof sequencesvhich appearin
the database,or by the frequencyof occurrenceof particular antigens. Howeer,
the fact that the consensushuman sequencesisedby O'Connor et al. (1998),
and certain germ-line sequencespbtain very high humannessscoressuggestgshat

bias in the selectionof antib odiesin Kabat is not a problem.

Recen work by an undergraduateproject studert (Michael Eckett) using IMGT

sequencealata suggestghat biasin the smaller Kabat datasetis not a problem.

In conclusion,the method | propose allows antib odies from any speciesto be
screenedor their similarity to the expressedwuman repertoire (their "humanness').
This givesusatool which may be usedto investigatethe importance of humanness
in triggering an anti-antib ody response. The method suggestsa modi ed strategy
for selectinghuman frameworks for humanization and may cortribute towards

predicting chimeric antib odieswith low artigenicity.
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Chapter 4

An automatic metho d for
applying numbering to
antib odies: Analysis and

applications

In the analysisof protein sequencend structure, having a standardisednumber-
ing schemeallows comparisonof featureswithout explicit alignmert. A numbering
sthemede nes standard positionsin the sequencend possiblyin relation to struc-
ture. Numbering of antib odieswas rst establishedby Kabat and Wu (1983) who
analysedantib odiesfor variability of residuesat various positionsin the sequence
(Wu and Kabat, 1970). They establishedthat certain regionsin the antib ody

sequenceare more variable than othersand termed thesehypervariable regionsas
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(@) (b)

Figure 4.1: Two CDR-L1 loops tted usingrigid body superposition. The short
loop (in red) is 11 residueslong while the long loop (in blue) is 16 residues. (a)
The numbers give the sequetial numbering of residuesin the loops(24-34for the
short loop, 24-39for the long loop) (b) The two CDR-L1 loopsnumbered sothat
structurally equivalert residueshave the samenumber.

"Complemetrarity Determining Regions' (or CDRs) which they predicted would

interact with the antigen.

This initial analysishas beenexpandedby other groupsleading to the dewelop-
mert of seweral numbering schemes.Figure 4.1 explainsthe conceptof numbering
in antib odies. The gure shovs CDR-L1 from the light chains of two di erent
antib odiesstructurally tted to oneanother. The shorterloop (colouredin red) is
11 residueslong while the longerloop (in blue) is 16 residueslong. If the residues

are numbered sequenially, then the numbering is asindicated in the Figure 4.1a.
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Howeer, from Figure 4.1b, it canbe seenthat the residueshighlighted by the grey
circlesare structurally equivalert and it would be appropriate to assignthe same
number to sud residues. Thereforein a structurally correct numbering scheme,
the protrusion in the longer loop is regardedas an insertion at position L30 and
residuesin this protrusion are numbered L30A, L30B, L30C, L30D, and L30E.

(The pre x L is usedto indicate the light chain.)

As stated above, a standardized numbering scheme for antib odies was rst in-
troduced by Wu and Kabat (1970). This numbering scheme was derived on the
basis of sequenceaalignmerts when no structural information for antib odies was
available. Chothia and Lesk (1987) examinedthe structures of antib ody variable
domains and showved that the sites of insertions and deletions (indels) in CDRs
L1 and H1 suggestedy Kabat on the basisof sequenceavere not structurally cor-
rect leadingto the introduction of the Chothia numbering scheme. Unfortunately
in 1989 (Chothia et al., 1989), the numbering scheme was erroneouslychanged
but in 1997 (Al-Lazikani et al., 1997),the structurally correct numbering scheme
originally proposedin 1987 was reintroduced. Sincethen, two further schemes
have beenintroduced. The IMGT numbering scheme (Lefranc et al., 2003) tries
to unify numbering for antib ody light and heavy chains with T-cell receptor
and chains. Howewer, sincelMGT is predominartly a DNA database,the num-
bering stops at the end of the region encaled by the V-genesegmen The AHo
numbering siheme (Honeggerand Pluckthun, 2001) extendsthe IMGT number-
ing shemeinto CDR-3 and framework 4 in the antib ody variable region. Both
IMGT and AHo sdhemesaccommalate indels by allowing su cien tly long gapsso
that all known sequencesnay be numbered without insertion letters (e.g.: 30A).

Nonethelessjt is possiblein future that unusual antib odies with extremely long
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insertionswill beidenti ed which cannotbe numberedusingthesesthemes.While
a common schemefor light and heavy chains and T-cell receptorshas a certain
elegance,the practical applications are lessobvious. It remains true that im-
munologiststend to cortinue to usethe Kabat stheme while those interestedin

structural analysisusethe Chothia scheme.

Thus far howeer, there has beenno resourcewherelty numbering of an antib ody
sequencecan be performed automatically and accurately In this chapter, two
methods to number antib ody sequencesutomatically are descriked. Section4.1
describesa method that usespairwisesequencealignmerts to number an antib ody
sequence.This was a re nement of a method previously developed by Dr. A. C.
R. Matrtin. The target arntib ody sequencas alignedwith a sequenceepreseting
the consensugattern of an antib ody sequenceand basedon the alignmernt, the
target antib ody sequences numbered. Section4.2 descrikesa more rigorous and
accuratemethod that usespro les to x andor points in the antib ody sequence
and then numbers the framework regionsand the loops independertly. A web-
sener for this program has also beenmade available via the webpageat http:

[lIwww.bioinf.org.uk/abs/a  bnum.

| assessethe performanceof the numbering method (Section4.3) by comparison
with numbering annotations in the last publicly available releaseof the Kabat
database(July 2000) (Johnsonand Wu, 2001). From this analysis, seeral sig-
ni cant errors have beenidentied in the manual Kabat annotations and this
automated numbering method can be usedto rectify theseerrors. A further inter-
esting outcome of this analysishas beenthe correction of insertion and deletion

positionsin the framework regionsof the antib ody. While Chothia et al. (1989)
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corrected the positions of indels in the CDRs of the Kabat numbering scheme
basedon structural information, the framework regionswere not includedin their
analysis. In Section4.4 of this chapter, | suggestcorrectionsto the Chothia num-
bering sthemefor the positions of indels in the framework regions. Someof the
work preserted in this chapter has been published in Abhinandan and Martin

(2008).

4.1 An alignmen t-based metho d to number an-

tib ody sequences

4.1.1 An existing tool for numbering

Martin (1996) has descriked a method automatically to apply humbering to an
antib ody sequenceby performing a global alignmert of the sequencewith a con-
sensugattern. Howeer, this method fails to number a sequenceaccuratelyunder

the following conditions:

When a leadersequencerecedeghe N-terminal end.
When there are truncations to the sequence.

When there are unusual insertions or deletions which tend to distort the

alignmert thereby introducing mistakesinto the numbering.
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Type of Number of
dataset sequences
Lambda class 1525
Kappaclass 2453
Heavy chain 4724

Table 4.1: The number of sequencesn ead dataset extracted from the Kabat
database.

As animprovemert to this method, it wasdecidedthat re nemernts to this program

could be deweloped to correct the errors introducedfor the above reasons.

4.1.2 Preparation of the test dataset

Using KabatMan (Martin, 1996) a test dataset was prepared by extracting se-
guencesf the variable region of antib odiesfrom the most recen public releaseof
the Kabat database(July 2000) (Johnsonand Wu, 2001). Thesesequencesvere
Itered by KabatMan for 100%sequencadertity and were grouped on the basis
of chain (light and heavy chain) and class(Lambda and Kappa in the caseof light
chain sequences).Table 4.1 givesthe number of sequenceshat populated eat

dataset.

4.1.3 Principle of the algorithm

The programwaswritten in the C programminglanguageand a simpli ed version

of the algorithm is asshawvn in Figure 4.2.

The rst stepin the procedurewas deriving a consensugattern to represem a
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‘ START ,

Read next sequence from ‘ Perform global alignment
PIR format file of sequence with
consensus pattern

Move gaps in the
hlignment so that they
conform with the
numbering scheme

Are there
any more
sequences to
be numbered?

From alignment
apply the numbering

Figure 4.2: Numbering algorithm basedon pairwise sequencealignmert.
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Light chain:

LFR1 (Framework 1): ~AVLTQPPXS!%!SIGXXVTI%C

L1 (Loop 1): XXSXXXXXXXXXXXXIX

LFR2 (Framework 2): WYQQKXGXXPKILIY

L2 (Loop 2): XX%XXXS

LFR3 (Framework 3): GVPXRFSGS!SGTXX%LXIERXN#C
L3 (Loop 3): XXXXXXXXXXXXXXX

LFR4 (Framework 4): FGXGTKLEIXKRA

Heavy chain:

HFR1(Framework 1): XVQLXXSGXXLIXPGXS!$!SG#bF%
H1 (Loop 1): XXXXXXX

HFR2(Framework 2): WV$QXPG$XLEW!!

H2 (Loop 2): XIXXXXXXGXXXYXXXXK!
HFR3(Framework 3): $XX!1%XDXSXX%!YXXXXSLeST X
H3 (Loop 3):  XXXXXXXXXXXXXX XXX XBHIK XX
HFR4(Framework 4); WGQGTXVTVSS

The following symbols represent groups of amino acids of a specific nature:

~: Acidic

I:  Hydrophobic

#: Aromatic

$: Basic

%: Hydroxyl containing

Figure 4.3: Light and Heawy chain consensus sequencesderived from
the multiple alignmert of 48 structures from the PDB (described in
http://www.bioinf.or g.uk/abs/segmethal.html).

light and heavy chain. Martin (1996) descritesderiving a consensupattern from
the multiple alignmert of light and heavry chain sequencefrom 49 structures. (see
http://www.bioinf.org.uk/ abs/ segmethod.html). Figure 4.3 givesthe original

consensusequenceslerived for the light and heavy chain.

The nw program deweloped by Dr. A. C. R. Martin that implemerts the Needle-

man and Wunsd method for global pairwise alignmert (Needlemanand Wunsd,
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Type of Gap insertion Gap extension Type of

chain penalty penalty matrix
Light 10 1 BLOSUMG62
Heary 15 1 Normalized MDM78

Table 4.2: Optimal parametersfor alignmert of light and heary chain sequence
alignmert.

1970) was usedto perform alignmernt betweenthe antib ody and the consensus
sequence Sincethe numbering shemedependson the alignmert, it is imperative
to ensurecorrect alignmert sothat residuesare numbered correctly. In order to

ensurecorrect alignmern, the following alignmert parameterswere varied:

1. Substitution matrix - PET, BLOSUMG62, Normalized MDM-78.
2. Gap insertion penalty - 10, 15, and 5.

3. Gap extensionpenalty - 0, 1, 2, 3, and 5.

After manual examination of se\eral pairwise alignmerts, the parametersshovn
in Table 4.2 were chosenasthey gave the most correct alignmerts of the antib ody

sequencesvith the consensusequences.

4.1.4 Deriving consensus seguences

An antib ody variable region sequenceonsistsof 7 regions,asshovn in Figure 4.4.
For unusually long artib ody sequenceghe pairwisealignmert with the consensus

sequencecould be incorrect. To resole this problem, it was decidedto derive
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Figure 4.4: Schematic represemation of the seven regionsof the antib ody variable
region. The pre x L or H indicate light or heavy chain respectively. LFR1, HFR1,
LFR2, HFR2, LFR3, HFR3, LFR4, HFR4 - Light or Heavy chain framework
regions.L1, H1, L2, H2, L3, H3 - Complemermarity Determining Regions(CDRS)
or loops.

Chain/Class FR1 Loopl FR2 Loop2 FR3 Loop3 FR4

Lambda 0 0 62 119 132 0 0
Kappa 4 0 3 13 19 1 0
Heavy 1 0 18 3 3 0 3

Table 4.3: Numbers of sequenceshat gave insertionsin the consensualignmert.
FR = framework region

alternate consensussequencedor the unusual cases. Having xed the optimal
alignmert parameters,all alignmerts betweenthe antib ody sequencend the orig-
inal consensusequencdgFigure 4.3) were examined. Sequenceshat gave gapsin
the consensussequencealignmernt were isolated and clustered basedon regions
where they have more residuesthan the consensussequence. These sequences
were multiply aligned using MUSCLE (Edgar, 2004) and an alternate consen-
sus sequencewas derived on the basis of sequenceconseration. The alternate

consensusequencesre shavn in Figure 4.5.

Table 4.3 shavs the number of sequenceshat were clusteredbasedon the region

of insertion in the original consensusequence.

137



LFR1: ~AVLTQPPXS!%!SIGXXVTI%C

L1: XXSXXXXXXXXXXXXIX

LFR2: WYQQKSPGSAPVTVIY

L2: X%DSDXXXXGS

LFR3: GVPXRFSGS$D!SGTXX%LXEDXXX#C
L3: XXXXKXXKXXKXXXKXX

LFR4: FGXGTKLEIXKRA

(@) Consensussequence for insertions in LFR2segment.

LFR1: ~AVLTQPPXS!%!SIGXXVTI%C

L1: XXSXXXXXXXXXXXXIX

LFR2: WYQQKXGXXPKILLRY

L2: X%DSDXXXXGS

LFR3: GVPXRFSGS$D!SGTXX%LXEDXKX#C
L3: XXXXXXXXXXXKXXXX

LFR4: FGXGTKLEIXKRA

(b) Consensussequence for insertions in L2-LFR3.

HFR1: XVQLXXSGXXL!XPGXS!$!SGHRES0
H1: XXXXXXXXXXXXX

HFR2: WV$QXPG$XLEW!!

H2: XIXXXXXXGXXXY XXXXK!

HFR3: $XX!%XDXSXX%!Y XXXXXSLARKXEOXX
H3: ) 9,9,9,9.9,9,9,9.9,9,9,9.9.9,9.9.9.9,0.9.0.9,9,9.0.4
HFR4: WGQGTXVTVSS

(c) Consensussequence for insertions in the heavy chain.

Figure 4.5: Alternate consensusequence$o be usedwhenthere are insertionsin
(a) LFR2 segmen of Light chain (b) L2 or LFR3 in Light chain (c) Heavy chain.
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4.1.5 Identifying chain type using Z-scores

Sincethe numbering program is applicable only to antib ody sequencesthe need
to dewelop a method to di erentiate antib odiesfrom non-artib odies and further,
to di erentiate light and heary chains, was realised. Deret et al. (Deret et al.,
1995) have described a method to assignsubgroupsto human antib ody sequences
(Johnsonand Wu, 2001) basedon sequenceconsenration in framework 1. It was
initially decidedto usetheir procedure(SUBIM) to classify sequencesHowever,

the program su ers from two signi cant limitations:

An inability to di erentiate antib ody sequenceffom non-artib ody sequences.

Assigningincorrect chain typesin seeral cases.

It was then decidedto dewlop a completely new procedure using Z-scores(de-
scribed in Section3.3). The procedurefor doing this is shovn in Figure 4.6 and

is detailed below:

1. For every sequencen the input le, do the following steps:

2. Chedk the length of the input sequence.lf it is lessthan 80 residueslong,
report that a chain type cannot be assignedo the sequencend proceedto

the next sequence.

3. Run ssearch33 (from the FASTA padage (Pearsonand Lipman, 1988))

for the query sequenceagainst the databaseof human light chain kappa
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classsequencesAn E-value cut-o of 100000is usedsothat pairwiseiden-
tities betweenthe query sequencewith ewery sequencen the databaseare

obtained.

. If the length of the alignmert with the top hit is lessthan 94 residues,
then goto step 7. Someartigenstend to have high sequencesimilarity with
antib ody sequencesver short stretchesof alignmert. This lter ensureghat
only sequencesvith similarity over the ertire variable chain of an antib ody

are consideredfor further processing.

. Calculate the meansequencedertity for the query from the set of pairwise

idertities. From this, calculatethe Z-scorefor the query using:

unery = ( query human): human (4-1)

where
Zqeery - Z-scoreof the query sequence.

query - Mean percenage idertity of the query sequenceagainstthe library

of human sequences.

human - Meanpercenageidentit y of databaseof human sequencesalculated
by averaging the mean percenage idertities of all human sequencesvhen

comparedwith all other human sequences..

hman - Standard deviation of databaseof human sequence$rom the aver-

agefrom the meanpercenage idertities.

. If the Z-scoreis lessthan the threshold Z-scorefor the database(-3.9 for

Kappa, -4.5 for Lambda, and -3.1 for Heavy) assignthe databasetype to
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Chain/Class Z-score
type threshold
Lambda class -4.4970
Kappa class -3.8730
Heary chain  -3.0630

Table 4.4: Table shaving the Z-scorethresholdsfor idertifying chaintype. The
thresholdswere set after examiningthe Z-scoresof murine and human antib odies
in the Kabat database.

the sequenceGoto step 2 to processthe next sequence.

7. Goto step 2 and run ssarch33againsta di erent database(human lambda

or heavy chain sequences).

8. If none of the Z-scoresof the query is above the threshold Z-scores(see
belaw), assignANTIGEN type to the sequence.Go to step 2 and process

the next sequence.

The threshold for length was decided after manual examination of antib ody se-
guencesn the Kabat database.Sequencethat are shorterthan 80 residuesdo not
contain featurestypical of antib odiesand it was decidedto setthis asthe length
threshold. Any antib ody sequencehat is lessthan 80 residuesin length is not
assigned chain type. Similarly, the thresholdfor Z-scoresvasset after evaluating

the Z-scoresfor mouseand human antib ody sequencegxtracted from the Kabat

database. The thresholds are shavn in Table 4.4 and were decidedupon based
on the lowest Z-scoresobsened for the human and mouseantib odies for ewvery
dataset (Lambda/Kappa classlight chains and heary chains). It must be noted
that the thresholdswere set after consideringthe lowest scorefor a murine anti-

body sequencend the humannessscoresof antib odies belongingto other species

were not considered. Howewer, experiencesuggeststhesethresholds are suitable
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Figure 4.6: Identifying type of chain/class of an antib ody sequencéy calculating
the Z-scorewith respect to the distribution of human antib ody sequences.
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for antib ody sequence$rom other species.

4.1.6 How the numbering algorithm works

The overall algorithm is asshowvn in Figure 4.7. The rst stepinvolvesthe iden-
ti cation of the chain type (heavy chain or lambda/kappa classfor light chain)
using either SUBIM (Deret et al., 1995) or the Z-scoresprocedurethat hasbeen
descrikedin Section4.1.5. The sequences alignedwith the appropriate consensus
light or heavy sequenceThe alignmert is chedked for possibleerrorsby examining
the consensusequencealignmert for any gapsin which caseit is alignedwith an

alternate consensusequence.

An important problemthat neededaddressingvasthe caseof light chain sequences
with truncations towardsthe C-terminal end of the variable region. It wasnoticed
that incorrect alignmerts werefound particularly in the L3-LFR4 regionand these
hadto be dealt with separately The following sectiongivesdetails of the methods

deweloped to handle thesecases.

4.1.7 Adjustmen ts to alignmen ts in the L3-LFR4 regions

As stated above, it was noted that the alignmert was frequenly incorrect and
adjustmerts were required. The following stepswere followed while adjusting the
alignmert in the L3-LFR4 region. Examplesprovided shav the way the alignmert

changesare e ected.
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Accept PIR file
with antibody sequences

|

Determine chain types of
input sequences using
SUBIM/Z-Scores

!

For every sequence
do the following

Globally align query sequence
with light chain consensus sequence

Is sequence
a light chain?

Are there gaps in
consensus alignment?

Is gap in LFR2, L2,
or LFR3 region?

Globally align query sequence
with alternate light chain
consensus sequence

Are there gaps in
consensus alignment

Display warning: Input

with heavy chain consensus sequence

Globally align query sequence

A

sequence has unusual insertions

A 4
Print alignment and

Are there gaps in
consensus alignment?

Globally align query sequence
with alternate heavy chain
consensus sequence

Are there gaps in
consensus alignment

Display warning: Input
sequence has unusual insertions

numbering

STOP

Figure 4.7: Overall algorithm for the alignmert-based numbering method.
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1. Extract the antib ody sequencan LFR4 from the alignmert with the con-

Sensus.

2. If thereis no gapin the rst position of LFR4, exit from the routine.

3. If LFR4 is not empty, chedk whetherthe start of LFR4 hasa gap. If it does
and the last residuein L3 is either of 'T', °S', "P', 'F', 'L', or "W', move
the last residuefrom L3 into the rst position of LFR4 in the alignmen.
Having performed this, exit from the routine. The position at which the

alignmernt is adjusted is indicated by the ™*' symbol.

Example:

DHYC  SSYTSINTWVS----  -GGGT--------

XY#C XXXXXXXXXXXXXXX  FGXGTKLEIXKRA

HHHH HARRH AR HARRHHHH R
End of L3 LFR4
LFR3

After adjustmernt, this becomes:
DHYC SSYTSINTWV----- SGGGT--------

XY#C XXXXXXXXXXXXXXX  FGXGTKLEIXKRA

4. If LFR4 is empty, ched the length of L3. If it is lessthan 4, then exit from

the routine.

5. Pick the last 4 residuesfrom L3 and match the following patterns of amino

acidsin them.

a) FG b) GSP c) FSP d) FDG e) FVD f) FR g) FW h) FXGG
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If one of these pattens is obsened in the last 4 residuesof L3, then move

theseresiduesinto LFR4 and exit from the routine.

Example:

DYYC SSYTSISLTVLFG--  ---memeeeee-

XY#C XXXXXXXXXXXXXXX  FGXGTKLEIXKRA

HHIH R HHHHHHHHHH
End of L3 LFR4
LFR3

After adjustmerts, this becomes:
DYYC SSYTSISLTVL---- FG-----------

XY#C XXXXXXXXXXXXXXX  FGXGTKLEIXKRA

. Chedk the number of Glycinesin the last 4 residuesof L3. If it is lessthan

2, exit from the routine.

. If there are at least 2 Glycines amongstthe last 4 residuesof L3, examine
the residueprecedingthe rst Glycine. If it isoneof 'T', °S', "P', 'F', 'L/,
or "W', then move the segmen from the residueprecedingthe rst glycine

to LFR4. Exit from the routine.

Example:
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DYYC  QTWGTGGG----w--  =meemeeemes
XYHC — XXXXXXXXXXXXXXX FGXGTKLEIXKRA

HHIH R HHHPHHHHHHH
End of L3 LFR4
LFR3

After adjustmerts, this becomes:
DYYC QTWG----------- TGGG---------

XY#C XXXXXXXXXXXXXXX  FGXGTKLEIXKRA

HHHH HARRHH AR HARRAHHH R
End of L3 LFR4
LFR3

8. If the rst residueamongthe last 4 residuesin L3 is a Pherylalanine and the
third residueis Glycine, then move the last 4 residuesfrom L3 into LFR4.

Having performedthis, exit from the routine.

Example:
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GEATAVYYVAEVYNNYLYYGIKELGARGLLVTVSS———=—————————
XED3AXYYCXXXXXXXXXXXXXXXXXXXXXXXXXXXXWGQGTXVTVSS

* *

(a) Erroneousalignmert in HFR3 end{H3{HFR4

GEATAVYYVAEVYNNYLYYGIKEL--————=—=—————— GARGLLVTVSS
XED3AXYYCXXXXXXXXXXXXXXXXXXXXXXXXXXXXWGQGTXVTVSS
* *

(b) Correct alignmert

Figure 4.8: Example of an error in the alignmert for an equineheavy chain se-
guencein the HFR3{H3{HFR4 region. The erroneousalignmert (output from the
numbering program) is shavn in (a) and the correct alignmert is shown in (b).
The beginningof H3 and HFR4 are marked by the ™' symbol below the alignmert.

*

DYHC  GADHGSGSDFVGG-- -----mrmere-

XY#C XXXXXXKXXXXXXXXX  FGXGTKLEIXKRA

HHIH HHHIHH A HHHHHHHHHH
End of L3 LFR4
LFR3

After adjustmerts, this becomes:
DYHC GADHGSGSD------ FVGG--------

XY#C XXXXXXXXXXXXXXX  FGXGTKLEIXKRA
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4.1.8 Discussion

From preliminary analysis, it could be said that although the method was rea-
sonably accurate, there was no guarartee that the numbering output from the
program would be perfect owing to inherert limitations with using an alignmert-
basedapproad. It alsorequired a large set of relatively arbitrary rules to deal
with special cases. Unusual sequencefeatures may lead to a wrong alignmert
and therefore wrong numbering. An example of this is showvn for an equine IlgE
heavy chain sequencé€Navarro et al., 1995)in the HFR3{H3-HFR4 regionin Fig-
ure 4.8. The consensussequencegor CDR-H3 contains seweral X's to represen
the longestsequencehat has beenobsened for this loop. Howeer, this causes
a wrong alignmert becausethe start of HFR4 is unusual. HFR4 usually starts
with a Tryptophan (W) whereasthe start of HFR4 in this sequencas a Glycine
residue(G). It wasthereforedecidedto implemert a pro le-based approad to ap-
ply numbering to antib ody sequences the hope that this would be lessarbitrary

and more accurate.

4.2 A prole-based numbering metho d

This numbering algorithm usespro les derived from the Kabat databaseto x
andhor points in an antib ody sequence.By xing ancdhor points in the sequence,
it becamepossibleto isolate the sequenceof ewery region (framework region or

loop) and number ead of them independerily.
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Chain type Sequencdaype Number of sequences

Light Complete 794

Light Truncated 3044
Heavy Complete 2641
Heavy Truncated 1272

Table 4.5: Number of complete/truncated light and heary chain sequence®x-
tracted from the Kabat database.

4.2.1 Preparation of the dataset

Using KabatMan (Martin, 1996), sequencesf antib odies were extracted from
the Kabat database (Johnson and Wu, 2001). For easeof bendmarking the
e ciency of the algorithm, the initial set of sequencesvere classi ed as being
truncated/complete light or heary chain sequences.Any sequencewith Kabat
annotations for the rst and last residuesof the variable region (L1, L109 in the
light chain and H1, H113 in the heary chain) was regardedas being complete
and all other sequencesvere treated as truncated sequencesTable 4.5 givesthe
number of completeand truncated light and heavy chain sequencesxtracted from

the Kabat databaseusing KabatMan.

For structural analysis,a list of antib ody structures was preparedby parsingthe
XML le from SACS (Allcorn and Martin, 2002) and the structure les were

obtained from the PDB (Berman et al., 2000).

4.2.2 Creation of prole sets

The strategy adopted was to de ne a set of andhor points in the sequenceand

to Il in the numbering basedaround these locations. The anchor points were
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Anchor points for pro le
Prole name Light Heavy
FR1 Start L1-L6 H1 - H6
FR1 End L18 - L23 H20 - H25
FR2 Start L35 - L40 H36 - H41
FR2 End L44 - L49 H44 - H49
FR3 Start L57 - L62 H66 - H71
FR3 End L83 - L88 H89 - H94
FR4 Start L98 - L103 H103- H108
FR4 End L104 - L109 H108- H113

Table 4.6: Kabat positionsusedin the pro le de nitions.

Chain type Sequencdype Sequenceshat could
not be numbered (%)

Light Complete 1/794 (0.12%)

Light Truncated 44/3044 (1.44%)
Heavy Complete 2630/2641(99.58%)
Heavy Truncated 1260/1272(99.05%)

Table 4.7: Number of complete/truncated light and heary chain sequence®x-
tracted from the Kabat databasethat could not be numbered usingjust 3 pro le
sets(lambda, kappa, heavy).

chosensothat they would represen the start and end of every framework region.
For this | extracted the propensitiesof ead of the 20 amino acidsin the rst and
last six positions of every framework region using KabatMan (Martin, 1996)and
a Perl script to analyseresults. Eac set of six residueswas termed a pro le and
a set of pro les represeting the start and end of the four framework regionswas
termed a pro le set Table 4.6 givesthe list of Kabat positionsthat were usedto

construct the pro les for the light and the heavy chain.

Initially , three pro le setswere created, classi ed on the basis of chain{ heavy
chain and lambda and kappa for the light chains. Howewer, a signi cant number
of the sequencesould not be numbered as andor points for the start and end of

the framework regionscould not be xed in the correct order (SeeTable 4.7).
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Classi cation Number of
pro les
Human subgroups:Lambda class 6
Human subgroups:Kappa class 4
Human subgroups:Heavy chain 6
6
6

Species:Lambda class
Species:Kappa class
Species:Heavy chain

D

Table 4.8: Classi cation schemeand number of pro le sets.

Additional prole setswere then createdto make eath more specic. Table 4.8

lists 32 pro les that were createdon the basisof the following criteria:

a) Human subgroup classesas identi ed by Kabat. From the 1994 version of
the Kabat database,sequencesvere divided into families basedon amino acid
identit y wheremenbersof a family di er by 12 amino acidsor fewer (Deret et al.,
1995). This led to the creation of 16 human sub-group-sgci ¢ pro les as shown

in Table 4.8.

b) Speciesof origin for the Lambda, Kappa and Heavy chain sequences.This

resultedin a further 16 non-human species-spci ¢ pro les asshowvn in Table 4.8.

As will be shown later, the dewlopmen of more specic pro les signi cantly
improved the number of sequenceshat could be annotated using the numbering

program (seeTable 4.11).
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4.2.3 The numbering algorithm

To number a sequencea sliding-window protocol is applied in which ead window
consistsof a set of six consecutie residues.The window is scoredagainsta pro le
beforeit is moved by a singleresidueto spanthe next set of 6-residues.The score

for a pro le match is calculatedas:

M = max(Sy;);(j = 0N 6) (4.2)

X
Sp;j = - IOQKSHj) (43)

where M represets the scoreand S,; represets the scoreprole in the jth

window of the sequence.

Once andhor points for the starts and ends of the framework regionshave been
xed, the sequencdor ewery region (framework 1, loop 2, etc) is extracted and
numbered independerily. Howewer, it was noticed in se\eral sequenceshat the
order of the andhor points was incorrect. For example,the andcor point of the
end of framework region 1 could appear after the anchor point for the start of
framework region 2. While detecting out-of-order misassignmets is trivial, de-
tecting all misassignmets of anchor points proved tedious requiring the designof

elaborate protocolsto ensureerror-freeassignmen
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Range of lengths

Region name Light Heavy
Min  Max Min  Max
Framework 1 22 23 24 29
CDR-1 7 17 6 18
Framework 2 14 16 13 14
CDR-2 5 12 10 23
Framework 3 31 40 29 34
CDR-3 5 18 2 30
Framework 4 10 15 10 12

Table 4.9: Minimum and maximum obsened lengths of the 7 regionsin the light
and heavy chain.

A direct inferenceof andhor-point misassignmen could be made when the order
of the pro les wasincorrect. In a few caseswherethe pro le assignmets werein
the correct order, the separationbetweenthe pro le assignmets was clearly too
large or too small. Sud caseswveredetectedby examiningthe separationbetween
the pro le assignmets to seeif they fell within pre-setlimits shovn in Table 4.9.
Theselimits weresetafter the distribution of regionlengthsin the Kabat database
was manually examined. It must be realisedthat it may be necessaryto extend
theselimits in future to accommalate unusually long sequences.Howeer, this
would require cautious modi cation to ensurethat sequencesre not numbered

incorrectly.

A ranking sthemewas introducedto cope with pro le misassignmets. When a
pro le misassignmenis detectedon the basisof pro le order and separation,the
bestsewen pro le setassignmets are examinedin turn to seeif the correct match
can be found. If not, it is reported that the sequencecannot be numbered. Once

pro le assignmets are completed,the sequencef ewery regionis extracted.

Once the andhor points for the starts and ends of the framework regions have
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been xed in the antib ody sequencethe sequenceof every individual region is
extracted. This is shavn in Figure 4.9. The boundariesfor every region are set
after the best pro le assignmets have been made and are known to be in the
correct order. In somecases,the input sequencecortains a leader sequenceat
the N-terminal end, or the constart region sequencet the C-terminal end. This
processexcludesextraneousresiduesfrom the N-terminal or C-terminal end of the

antib ody asthey are not included in the alignmert.

To ensureerror-free assignmen for the region boundaries(start and end of loop
and framework regions),a nal ched is performedby concatenatingthe sequences
in the individual regionsand examining whether the concatenatedsequenceas a
substring of the original sequenceThis ched is particularly usefulwhenthe pro le
represeting the end of FR1 or the start of FR4 have beenincorrectly assigned.

An exampleis showvn in Figure 4.10.

Numbering is applied in every region basedon one of the following rules:

1. Normal numbering where deletions are made before the position of inser-
tion { For example,the Kabat de nition for region CDR-L2 is L50 to L56
giving it a standard length of 7 residues.A maximum length of 12 residues
(antib ody 784995 (Ilgnatovich et al., 1997)) and a minimum length of 6
residues(antib ody Rer5 (Rast et al., 1994)) have been obsened for this
region. The position of insertion accordingto the Kabat standard is L54
(L54A, L54B, L54C etc). Deletions are placed beforethe position of inser-
tion (L54). For example,in the caseof a 5-residueCDR-L2, residuesL53

and L54 are deleted. This is demonstratedin Figure 4.11.
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Schematic representation of an antibody sequence

CDR1 CDR2 CDR3
FR1 FR2 FR3 FR4
Sequence to be numbered
After scanning for best profile assignments
O i (] i (] (] —
FR1 FR1 FR2 FR2 FR3 FR3 FR4 FR4
Start End Start End Start  End

Start End

FR1 1 Loop1 1 Loop2 i 1 Loop3 FR4

TTIT Tl

Extract sequences of every region

Figure 4.9: Isolating the sequencef every regionfrom the bestpro le assignmets
Ead pro le represets the start or the end of a framework region.
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Sequence to be numbered

QVOLOQSGPGLVKPSQTLSLTCAISGDSVSSNSAAWNWIRQSPSRGLEWLGRTYYRSKWYNDYAVSVKSRITINPDTSKNQF SLQLNSVTPEDTAVYYCARAVGGTTGTRG!

After best profile assignments

QVOLQJSGPGLVKPSQTLSLTCATIJGDSVSSNSAAWNWIRQSHSRGLEWLGRTYYRSKWYNDYAVSVKSRITINHDTSKNQF SLQLNSVTPEDTAVYYCARAVGGTTGTRG!

[ T 11

FR1 FR1 FR2 FR2 FR3 FR3 FR4
Start End Start  End Start End Start

After extraction of the sequence in the regions

FR1: QVOLQOQOSGPGLVKPSQTLSLTCAIS

Loopl: GDSVSSNSAAWN

FR2: WIRQSPSRGLEWLG

Loop2: RTYYRSKWYNDYAVSVKS

FR3: RITINPDTSKNQFSLQLNSVTPEDTAVYYCAR
Loop3: AVG

FR4: GTTGTRGGMDVW

Alignment with FR4 consensus

GTTGTRGGMDVW----------
"""""" WGQGTXVTVSS

Figure 4.10: Example showving the detection of errors through alignmert with a
consensusequencgattern. In this example,the pro le assignmenhof heary chain
framework region 4 start is incorrect as framework 4 is truncated after the rst
residue(W). The alignmert with the framework 4 consensuss shown in the nal
box.
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[50 L51 L52 L53 L54 L55 L56
G T T - - R T

(8) CDR-L2: GTTRT

L50 L51 L52 L53 L54 L55 L56
G T T R - G T

(b) CDR-L2: GTTRGT

L50 L51 L52 L53 L54 L54A L55 L56
E D S T T R G T

(c) CDR-L2: EDSTTRGT

Figure 4.11: Normal numbering in CDR-L2. The standard indel position is L54.
Deletions are made before the position of insertion. The Kabat numbering is
shown for varying lengths of CDR-L2. (a) 5 residues(GTTRT) (b) 6 residues
(GTTRGT) (c) 8 residues(EDSTTRGT).

2. Rewersenumbering wheredeletionsare madeafter the position of insertion -
For examplein CDR-L1, whoseKabat de nition is L24 to L34, the standard
lengthis 11residues.A maximum length of 17 residuesand minimum length
of 7 residueshave been obsened in this region. Insertions are placed at
position L27 accordingto the Kabat standard. Deletions are placed after
the position of insertion (L27). For a 7-residueCDR-L1, residuesL28, L29,

L30, and L31 are deleted. This is showvn in Table 4.12.

3. Straight numbering whereresiduesare numberedsequetally - In the heavy
chain framework region 4, residuesare numbered sequetially asthere are

no de ned indelsin this region. This is shavn in Figure 4.13.

In someregions,the Kabat numbering doesnot imposea xed site for indels. For
instance,in the heavy chain framework region2 (HFR2) the deletionappearsto be

placedat the most likely position basedon sequenceln thesecasesan alignmernt
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L24 L25 L26 L27 L28 L29 L30 L31 L32 L33 L34
S A S \Y, - - - Y Y M Y

(@) CDR-L1: SASVYYMY (8 residues)

L24 L25 L26 L27 L28 L29 L30 L31 L32 L33 L34
S A S - - S \% Y Y M Y

(b) CDR-L1: SASSVYYMY (9 residues)

L24 L25 L26 L27 L28 L29 L30 L31 L32 L33 L34
S A S S - S VvV Y Y M Y

(c) CDR-L1: SASSSVYYMY (10 residues)

Figure 4.12: Rewersenumbering in CDR-L1. The standard Kabat indel position
is L27. Table shavs the Kabat numbering where deletions are made after the
position of insertion (L27).

H103 H104 H105 H106 H107 H108 H109 H110 H111l H112 H113
\W G Q G T M \% T Vv S -

(a) HFR4 - WGQGTMVTVS (10 residues)

L98 L99 L100 L101 L102 L103
F G P G T K
L104 L105 L106 L106A L107 L108

v T A L S Q
L109 L110 L111
P - -

(b) LFR4 - FGPGTKVT ALSQP (13 residues)

Figure 4.13: Straight numberingin HFR4. The sequencén the regionisWGQGT-
MVTVS and numbering is applied sequetially to residues.
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Region Is alignmert performed Is alignmert used Numbering

name for this region? in numbering? method
LFR1 Yes No 1
L1 No No 2
LFR2 No No 1
L2 No No 1
LFR3 No No 1
L3 No No 1
LFR4 Yes No 3
HFR1 Yes Yes 1
H1 No No 2
HFR?2 Yes Yes 3
H2 No No 2
HFR3 No No 1
H3 No No 1
HFR4 Yes No 3

Table 4.10: Regionsin the light and heary chain and methods that are usedto
number them.

is performedbetweenthe sequencen the regionand a consensugpattern for that
region and numbering is applied basedon the alignmert. Table 4.10 summarises
the numbering methods used for the di erent regionsin the Kabat numbering

scheme.

Figure 4.14givesa o wchart of the numbering algorithm.

4.2.4 Benchmarking the numbering algorithm

In order to assesghe performanceof the pro le-based numbering program, Ab-
Num, sequencesf antib odiesand their Kabat numbering were extracted from the
July 2000releaseof the Kabat database. This wasdoneusing KabatMan and four
test datasetswere preparedon the basisof chain type (light or heary chain) and

nature of sequencgcomplete or truncated), as descriked in Section4.2.1.
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Read all sequences into
memory

|

Read all profiles
sets into memory

|

Read numbering files
into memory

A

Read region information
into memory

Start with a
rank of 1

For every profile segment in a

profile set, find the appropriately <€
ranked segment assignment in sequence

A

Calculate profile set score by
summing individual segment scores

Read next sequence

A

Any profile segment

Translate the profile
segment assignments to
region boundaries

|

Extract sequences
of individual regions

!

Increase
Rank

Align sequence in region
with a consensus pattern

for the region and adjust
region sequence if required

A

misassignments?

P2
<
y

Any more
sequences to
be numbered?

End
Program

Is Rank of last
assignment > 7

Report that sequence
cannot be numbered

A

Concatenate sequences
of individual regions

Is concatenated
sequence a
substring of
original
sequence?

Number sequence
in every region
independently

Figure 4.14: Flowchart of the numbering program. Pro le segmen First or the
last 6 residuesin ewery framework region Region: Either meansone of the sewen
framework regions(LFR1, HFRS3, etc) or a loop (CDR-L1, CDR-H2, CDR-L3,

etc).
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Figure 4.15 gives the algorithm for bendymarking the numbering program. All
sequencesnnotated in the Kabat databasewere numbered using AbNum. The
numbering of AbNum was compared with the Kabat numbering. The Kabat
databasestandard for numbering is very inconsisten in the range of L106{L111
in light chains and H100{H101 (including all residueinsertionsat H100: H100A,
H100B, H100C, etc.) in the heary chain. For easeof comparison, residuesin
thesezoneswere excludedfrom examination. Sequencesvherethe AbNum num-
bering matched the Kabat databasenumbering were regardedas being correctly
numbered. For the other caseswhere mismatdces occurred, a random sample of
sequencesvas selectedand manually examinedto determine whether the error
was in the AbNum numbering, or in the Kabat database. These statistics were
then extrapolated to estimatethe overall error percernagesfor the Kabat database

and AbNum as shown in Formulae 4.4 and 4.5:

(4.4)

and

(4.5)

where Ey is the estimated perceniage of errors in Kabat, E, is the estimated
percertage of errorsin AbNum, e and e, are the number of errors iderti ed in
Kabat and AbNum respectively in a sample of Ng sequenceslJ, is the number
of sequenceshat AbNum was unableto number, N, is the total number of mis-

matchesbetween AbNum and Kabat and N+ is the total number of sequences.
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Chaintype  Status  Total number Numbered Match Kabat
of sequences

Light Complete 794 793 682
Light Truncated 3044 3014 2688
Heavy Complete 2641 2622 2416
Heavy Truncated 1272 1245 793

Table 4.11: Number of sequencesiumbered by AbNum that match the Kabat
databaseannotations.

Table 4.11 gives the numbers of sequenceshat could be numbered by AbNum

and agreedwith manual numbering in the Kabat database.

Table 4.12 shows the results of the bendymarking study. All discrepanciesn the
AbNum numbering and Kabat databaseannotations were attributed to errorsin
the manual Kabat numbering. Every sequencéehat could be numberedby AbNum

appearsto have beennumbered accurately

4.3 Analysis of errors in the Kabat database

Sincethe manual examination of discrepanciesbetween AbNum numbering and
the Kabat databasenumbering seemedo suggesthat all wereerrorsin the Kabat
database,l setout to examinethe sourceof theseerrors. All sequences$or which
the AbNum numbering di ered from the Kabat numbering were isolated and a

region-wisedistribution of thesedi erencesis shovn in Table 4.13.

The following sectionsdetail the nature of errors in eat of theseregions. All

de nitions of regionsdescriked here are Kabat standard de nitions.
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Kabat
database

Split into 4 datasets

| ! !

Complete Truncated Truncated Complete
Light chain Light chain Heavy chain Heavy chain
Sequences Sequences Sequences Sequences
| , Group all

——  »|  sequencess

with mismatches

Can sequence

be numbered A 4

using AbNum Select a random sample of

50 sequences

A

Does Kabat database
numbering match
AbNum numbering?

N Manually examines
each sequence to
ascertain source of error

A

Consider AbNum
numbering and
Kabat numbering
annotation as correct

Categorize error as
Kabat annotation error
or AbNum error

A

Extrapolate to total
number of errors

Y

Calculate overall percentage of
Kabat database annotation <€
error and AbNum error

Y

Figure 4.15: Algorithm for bendimarking the numbering program.
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99T

Chain type Total number Not numbered Do not match Sample Error (%)

of sequences Kabat size Kabat AbNum
Light chain complete 794 1 111 50 50/50 (14%) 0/50 (0.12%)
Light chain truncated 3044 30 326 40 40/40 (10.7%)  0/40 (1%)
Heavy chain complete 2641 19 206 50 50/50 (7.85%) 0/50 (0.72%)
Heavy chain truncated 1272 27 452 39 39/39 (10.7%) 0/39 (2.12%)

Table 4.12: Bendimarking the performanceof AbNum: comparisonwith the Kabat databaseannotations. The perceriages
reported in the last two columnsare estimated error perceriagesbasedon the sampleset examinedmanually.



99T

Number of errors

Chain type Total number of
mismatches FR1 Loopl FR2 Loop2 FR3 Loop3 FR4
Light chain complete 111 0 13 5 54 72 43 8
Light chain truncated 326 5 71 7 112 73 187 49
Heavy chain complete 206 70 4 13 71 47 92 10
452 294 11 2 34 34 149 73

Heavy chain truncated

Table 4.13: Region-wisedistribution of errorsin the Kabat database.



Label L1 L2 L3 L4 L5 L6
AbNum Q S A L T Q
Kabat Q S A L T Q
Label L7 L8 L9 L10 L11 L12
AbNum P A S - V S
Kabat P A S \% S G
Label L13 L14 L15 Li1i6 L17 L18
AbNum G S P G Q S

Kabat - S P G Q S
Label L19 L20 L21 L22 L23
AbNum | T | S C
Kabat | T I S C

Figure 4.16: Kabat annotation error in LFR1. The 1-residuedeletion is placedat
L13 by Kabat although the Kabat standard imposesthat it must instead be at
L10.

Analysis of errors in the light chain

The Kabat standard assignsresiduesL1{L23 to LFR1. The usuallength of LFR1
is 23 residueswith a possible 1-residuedeletion which accordingto the Kabat
standard is at position L10. Howewer, asthe LFR1 numbering for the protein B3
(Kalsi et al., 1996)in Figure 4.16 demonstratesthe position of deletion in Kabat
is not consistemh. Sud errors have beencorrectedby AbNum as the position of

deletionshas beenenforced.

Similarly, incorrect numbering hasbeenobsenedin CDR-L1. The Kabat standard
assignsresiduesL24-L34to CDR-L1 with L27 asthe indel position. A number of
incorrect assignmets have beenobsened in this region sud asthe one shavn in
Figure 4.17for the protein SSbPB(lvanovski et al., 1998). In the example,the one-
residueinsertion must be placedat L27A (the secondSerinein RASQSVSSSYLA)

whereasthe Kabat databaseplacesthe insertion at L27F with no L27A....L27E.
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Label L24 25 L26 L27 L27A L27B
AbNum R A S Q S -
Kabat R A S Q - -
Label L27C L27D L27E L27F L28 L29
AbNum - - - - \% S
Kabat - - - S \ S
Label L30 L31 L32 L33 L34

AbNum S S Y L A

Kabat S S Y L A

Figure 4.17. Kabat annotation error in L1. The one-residue serine
(RASQSVSSSYLA) has beenassignedL27F by the Kabat databasealthough it
should have beenassignedL27A.

A di erent type of error hasbeenobsenedto occur for the regionsL1, LFR2, L2
and LFR3 as shown in Figure 4.18. The exampleshown is for the light chain of
the antib ody SHLC5.1 (Hohman et al., 1992). The end of L1 hasbeenincorrectly
annotated and the error can be seento extend all the way up to LFR4. The
examplein Figure 4.19shaws a similar casewherethe boundariesof L3 and LFR4

have beenincorrectly assignedn the Kabat database.

Analysis of errors in the heavy chain

In the heary chain too, similar errors with respect to incorrect assignmen of
region boundarieshave beenobsened. This is particularly clear in the caseof
the H2{HFR3 region. The Kabat numbering for HFR3 is from H66 to H94 and
most sequencedave a 3-residueinsertion at H82 (H82A, H82B, H82C). Howeer,
my analysis of mismatdes between the Kabat and AbNum numbering led me
to discover a large number of discrepanciedbetweenthe two annotations (nearly
30%). An exampleof this is shavn in Table 4.20which givesthe Kabat database

numbering and the AbNum numbering for CDR-H2 and HFR3. This sequence
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Original sequence

DPVLTQPGSISSSPGKTVTITCTMSGGTISSYWASWYWQ
KPDSAPVFVWSESDRMASGIPNRFAGSVDSSSNKMHLTI
TNV QSEDATD YYCAAAASRSPYRSIF GSGTKLNLGSPR

AbNum assignment

LFR1: DPVLTQPGSISSSPGKTVTITC

L1: TMSGGTISSYWAS

LFR2: WYW QKPDSAPVFVWS

L2: ESDRMAS

LFR3: GIPNRFAGSVDSSSNKMHLTITNV QSEDATDYYC
L3: AAAASRSPYRSI

LFR4: FGSGTKLNLGSPR

Kabat database assignment

LFR1: DPVLTQPGSISSSPGKTVTITC

L1: TMSGGTISSYWASWY

LFR2: WQKPDSAPVFVWSES

L2: DRMASGI

LFR3: PNRFAGSVDSSSNKMHLTITNV QSEDATDYYC
L3: AAAASRSPYRSI

LFR4: FGSGTKLNLGSPR

Figure 4.18: Errors in the Kabat annotation in regionsL1{LFR3. AbNum assigns
the boundariesof eat of the regionscorrectly (markedin blue) whereashe Kabat
annotation (which is wrong) is marked in red.

169



Original sequence

SYELTQPPSVSVPPGQTARITCSGDALPKKF AYWYQQ
KSGQAPVLVIYEDNKRPSEIPERFSGSSSGTMATLTI
SGAQVEDEGDYYCYSADINAKR VFGGGTKL TVLGQP

AbNum assignment

LFR1: SYELTQPPSVSVPPGQTARITC

L1: SGDALPKKF AY

LFR2: WYQQKSGQAPVLVIY

L2: EDNKRPS

LFR3: EIPERFSGSSSGTMATLTISGAQVEDEGDYYC
L3: YSADINAKR V

LFR4: FGGGTKL TVLGQP

Kabat database assignment

LFR1: SYELTQPPSVSVPPGQTARITC

L1: SGDALPKKF AY

LFR2: WYQQKSGQAPVLVIY

L2: EDNKRPS

LFR3: EIPERFSGSSSGTMATLTISGAQVEDEGDYYC
L3: YSADINAKRVFG

LFR4: GGTKL TVLGQPKA

Figure 4.19: Errors in the Kabat annotation in L3{LFR4. AbNum assignsthe
boundariesof eat of the regionscorrectly (marked in blue) and the Kabat anno-
tation (which is wrong) is marked in red.
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Label H50 H51 H52 H52A H52B H53 H54 H55
AbNum R F H S G R N P
Kabat R F H - - S G R
Label H56 H57 H58 H59 H60 H61 H62 H63
AbNum P Q Y A S E A \
Kabat N P P Q Y A S E
Label H64 H65 H66 H67 H68 H69 H70 H71
AbNum K G R V T A S T
Kabat A \ K G R \% T A
Label H72 H73 H74 H75 H76 H77 H78 H79
AbNum D S S S C Y M Q
Kabat S T D S S S C Y
Label H80 H81 H82 H82A H82B H82C H83 HB84
AbNum M N S L - - K T
Kabat M Q M N S L K T
Label H85 H86 H87 H88 H89 HO90 H91 H92
AbNum E D T G [ Y Y C
Kabat E D T G I Y Y C
Label H93 H94

AbNum E D

Kabat E D

Figure 4.20: Kabat databaseerror in the H2-HFR3 region of Axol.

does not have the usual 3-residueinsertion at H82 and this has been correctly
identi ed by AbNum. Howe\er, sincethe Kabat databaseannotationshave largely
beenmanual and the 3-residueinsert at H82 is very common, the sequencehas

beenincorrectly annotatedashaving residuesat H82A-C whereaghe insert should

have beenat position H52 in CDR-H2.
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4.4 Structural analysis: An alternate structure-
based numbering scheme to accommo date

indels in the framew ork regions

As descrited above, the two most widely used numbering schemesfor antib odies
are the Kabat and the Chothia sthemes.The Kabat numbering schheme(Kabat et
al., 1983)was basedon sequencealignmerts and placedinsertions wherethey oc-
curredin sequence Chothia and co-workers (Chothia and Lesk, 1987;Al-Lazikani
et al., 1997) examinedstructures of antib odiesand proposeda numbering sthheme
correcting the positions of insertions at the structural level rather than at the
sequencdevel. Howewer, only CDRs wereincludedin this analysisand framework

regionswere not examined.

A list of antib ody structureswasextracted from SACS (Allcorn and Martin, 2002).
Light chain and heary chain sequencedrom 561 structures were extracted from
the SEQRESrecordsof the PDB les. Thesewere numbered using AbNum and
the numbering was patched into the PDB les using patchpb (Dr. A. Martin,

unpublished). The sequencef every framework regionwasextracted and analysed
for deviations from the standard lengths descrited in Kabat (Wu and Kabat,
1970). Structures whose framework region lengths di ered from the standard
were tted usingProFit (Martin, ACR, http://www.bioinf.org.uk/s oftw are/

profit/ ). Where structures of variable regionswere not available, four or v e
structures were chosenand tted togetherto seeif certain positionsin the region

are more exible than others and thereforelikely to accommalate indels.

172



Region Kabat de nition  Length range Kabat indel Structural Structural

Name (Standardlength) Min - Max position ins. pos. del. pos.
LFR1 L1 - L23 (23) 22-23 L10 - L10
LFR2 L35 - L49 (15) 14- 16 - L40 L41
LFR3 L57 - L88 (32) 31-40 L66 L68 L68
LFR4  L98-L110(12) 12-13 L106 L107 -
HFR1 H1 - H30 (30) 29- 34 H6 H8 H8
HFR2  H36- H49 (14) 13- 14 - - H42
HFR3  H66- H94 (29) 30- 34 H82 H72 -

Table 4.14: Table comparing the Kabat indels with the structurally corrected
indels.

Table 4.14 comparesthe results of this analysiswith the Kabat standardsfor the
positions of insertions and deletionsin the framework regions. For LFR1 (Kabat
de nition L1 to L23) which hasa standard length of 23 residues,a structure with
22 residues(PDB Code 2vit (Fleury et al., 1998)) was found. 2vit also has an
LFR4 (Kabat de nition L98 to L110) length of 13 residuescomparedwith the
standard length of 12 residues. | tted the LFR1 and LFR4 regionsof 2vit to
that of 12e8 (Trakhanov et al., 1999)which hasstandard lengthsin theseregions.
For the remaining regionshowewer, no structures with unusual framework region

lengths exist.

The tted structuresof light and heavy chain framework regionsare shown in Fig-
ures4.21and 4.22respectively indicating the Kabat indel sitesand my proposed

structurally correct sites.

The caseof HFR3 is particularly interesting. The Kabat de nition for HFR3 is
from H66 to H94, a standard length of 29 residues.In most heavy chains howeer,
there is a 3-residueinsertion in HFR3 which Kabat designatesas being at H82

(H82A, H82B, H82C); seeFigure 4.23a. There are a small number of sequences

173



that do not cortain this insertion, but becausehis situation is rare, the majority
of theseare erroneouslyannotated in Kabat as cortaining the 3-residueinsertion
in HFR3 whereasthe residuesshould be inserted in CDR-H2 at position H52
(Figure 4.23b). In total, 74 sequencesn Kabat wereiderti ed wherethe end of
the CDR-H2 and the start of heavy chain framework region 3 have beenannotated

incorrectly.

Further analysisof HFR3 indicatesthat position H82 is unlikely to accommalate
insertions. A pairwise sequencealignmert betweenantib odies axol (Patel and
Hsu, 1997)and mab113 (Mantovani et al., 1993)asshown in Figure 4.24suggests
that H72 is the likely position of the 3-residueinsertion. Figure 4.25 shaws the
space lled represetation of the Fv regionof an antib ody. Residueshat would be
numberedH72and H82areindicated and it canbe seernthat H82A-C arerelatively
buried while H72A-C are on the surfacemaking it more likely that theseresidues
would be deleted. This is further corroborated by the work of AnnemarieHonegger
(Honeggerand Pluckthun, 2001) who analysedthe sequencesnd structures of
light chain and heavy chain variable regionsof antib odies and suggestedhat the
heavy chain has a 2-residueinsertion with respect to the light chain at position

H72.

4.5 Conclusions

In this chapter, a new method that usespro les to apply numbering sdhemesto

antib ody sequencesas beendescriked. This approad successfullynumbers the
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‘problem’ sequencealescriked in Section4.1.8. The analysisof manual annotations
in the Kabat databaseshaws that there is a high percerage of errors. Basedon
structural analysisof insertions and deletionsin the framework regions of anti-
bodies, | have extendedthe Chothia numbering schemeto correct the positions of

insertions and deletionsin the framework regions.
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(a) LFR1 (b) LFR2

(c) LFR3 (d) LFR4

Figure 4.21: Rigid body superposition of light chain framework regions. Colour
codesare: red - kabat indel position, green- structurally correct position of inser-
tion, pink - structurally correct position of deletion.
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(a) HFR1 (b) HFR2 (c) HFR3

Figure 4.22: Rigid body superposition of heavy chain framework regions. Colour
codesare: red - kabat indel position, green- structurally correct position of inser-
tion, pink - structurally correct position of deletion.

(a) Standard

(b) Correct

Figure 4.23: Numbering in H2-HFR3 (a) The standard numbering for H2-HFR3
in the Kabat databaseannotations (b) The correct numbering whenthe 3-residue
insertion at H82 are not preser.
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axol QIVLTQSGSEVKKPGESMQLKCTVTGFNVNSYWMHWVR
mab113 QVQLVQSGAEVKRPGAPVKVSCKASGYTFTDYYMHW\

...CDR-H2-> <-HFR3...
axol KGLEWVLRFHSGRNPPQYASEAVKG RVTASTDS--SSC
mabl113 QGLEWMGRINPNTGGTN-SAQKFQG RVTMTRDTSIST/
65 6789012abc345

..HFR3->
axol YMQMNSLKTEDTGIYYCAR
mab113 YMELSNLRSDDTAMYSCAR
6789012345678901234

(a) Alignment if position of insertion is H72

axol QIVLTQSGSEVKKPGESMQLKCTVTGFNVNSYWMHWVR
mab113 QVQLVQSGAEVKRPGAPVKVSCKASGYTFTDYYMHW\

...CDR H2 > <HFRS3...
axol KGLEWVLRFHSGRNPPQYASEAVKG RVTASTDSSSCYN
mab113 QGLEWMGRINPNTGGTN SAQKFQG RVTMTRDTSIST/
65 6789012345678

..HFR3 >
axol QMNSL KTEDTGIYYCAR
mab113 YMELSNLRSDDTAMYSCAR
9012abc345678901234

(b) Alignment if position of insertion is H82

Figure 4.24: Sequencalignmert betweenantib odies Axol and mab113.
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Figure 4.25: Space |l represemation of the variable domain of an antib ody.
The colour codes are: light chain - blue gray, heary chain - pink, HFR3 - yel-
low and highlighted by the white borders. The residuescolouredin blue and
green are H72A-C (if insert position is H72) and H82A-C (if insert position
is H82) respectively. This diagram was prepared using QTree (Martin, ACR,
http://www.bioinf.org.uk/soft ware/qtree/).
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Chapter 5

Predicting the Vy/ V| Interface

angle from Interface residues

The variability of antib odies is encaded in the Fv region which consistsof two
protein domains. Interactions betweenthe light and the heary chain cortribute
signi cantly to the stability of the variable fragment (F,). The V,/V_ interface
between the light chain and heary chain has beenshovn to a ect the binding
kinetics of a peptide (Chatellier et al., 1996). The framework regionat the Vi, /W,
interface consistsof two -sheets(Poljak et al., 1973), the structures of which
are consened acrossFab and light chain dimers (Chothia et al., 1985; Novotny
and Haber, 1985). Howewer, the cortribution of residuesin the framework re-
gions to interactions with the arntigen remains poorly understaod. It has been
demonstratedthat modi cation of residuesdistant from the antigen binding site

of the antib ody has a small yet signi cant e ect on the binding a nit y with the
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antigen (Chatellier et al., 1996;Rogusla et al., 1996). For example,Adair and co-
workers have demonstratedthat modi cation of residueH23 signi cantly a ects
binding of the antib ody with the antigen (Adair et al., 1999). While this may be
an impedimert for predicting the a nit y of engineeredantib odies, it must also
be emphasisedhat interactions at the V/V_ interfaceare crucial to maintaining
stability of the F,,. Understandingthe in uence of residuesin the Vi, / V, interface
on the padking angle betweenthe two domainswould help designantib odieswith

a de nable binding site topograply.

In this chapter, | presen an analysisof the distribution of the V},/ V| pading angle
and a method to predict the interface angle from the nature of interface residues
is descriked. A set of consered residuesin the framework regionsof V. and Vy
were chosenand the interfaceanglewasde ned asthe torsion anglebetweenthese
points. The main applications of trying to predict padking angle from interface
residuesare in modelling studies of antib odies and in humanization protocols.
The padking angle betweenthe variable chains of antib odies has previously not
been consideredwhen modelling variable chains of antib odies (Martin et al.,
1991;Martin et al., 1989;Whitelegg and Rees,2000). Knowing the padking angle
prior to modelling the variable regionlight and heary chain may help in choosing
more appropriate template structures upon which models may be based. This
work also helpsin identifying key residuesthat in uence the padking angle and
therefore, are instrumental in determining the topograply of the paratope. The
processof humanization involvesgrafting of murine CDRs onto human framework
regions (Joneset al., 1986). Further modi cation of residuesanking the CDRsis
usually requiredto restorethe binding a nit y of the mouseartib ody (Riechmann

et al., 1988). This could be extendedby modifying residuesat the Vy =\ interface
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in the humanized antib ody to their murine courterparts sothat the topography

of the paratope would be presened.

5.1 Preparation of the dataset

A list of F, and F,, structures was extracted from the SACS (Allcorn and Mar-
tin, 2002) XML le. This yielded a set of 561 antib ody structures including 6
anti-idiot ype antib odies (PDB Codes: 1cic, 1dvf, liai, 1pg7, 1gfw, and 2dtg).
Anti-idiot ype antib odies are antib odies derived against epitopes presen in other
antib odies. As ewery anti-idot ypic antib ody structure consistsof two antib odies,
all anti-idiot ype antib ody structures were split into two and the nal datasetcon-
sisted of 567 antib ody structures. This set comprised 314 structures for which
the sequence®f the light chain and heary chain were distinct. Conformational
changesin the antib ody CDRs upon binding with the antigen have been estab-
lished in sewral studies (Colman et al., 1987;Bhat et al.,, 1990; Herron et al.,
1991; Rini et al., 1992; Wilson and Stan eld, 1994; Mylvaganamet al., 1998).
The idea behind allowing redundancy in the dataset is that it allows for vari-
ability in a given structure. Structural tting of antib odieswas performedusing
ProFit (http://www.bioinf.org.u k/so ftwa re/p rof it/ ) which implemerts the
McLachlan algorithm (McLachlan, 1982). The AbNum program described in the
previous chapter was usedto apply Chothia numbering to the structures of anti-

bodies.

Programsfor analysiswere written in C and PERL. All graphswere created us-
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ing GNUPLOT and GRACE (http://plasma- gate.weizmann.ac.il /Grace/).
The program ssarch33 from the FASTA padage (Pearsonand Lipman, 1988)
was usedin the calculation of Z-scoresfor chain assignmet The StuggartNeu-
ral Network Simulator (SNNS) (http://www- ra.informatik.  uni - tu ebin gen.
de/SNNS) was usedto make assaiations between padking angle and interface
residues. The GRASS library (Team, 2006) was used for calculation of Eigen
vectorsand values. The Sun gridenginewas usedto distribute jobs acrossa grid
consistingof the C2 and the Queen. The C2 is a farm consistingof 96 IBM series
335nodesand the Queen is a farm consistingof 30 nodeswith ead node having

2 dual-coreAMD Opteron processors.

The “interface residues'are de ned as Chothia-numbered interface positions for
which there is a changein accessibiliy as a result of V4/V_ interaction. As a
rst step, sequence®f the light and heary chain were extracted from PDB les
of the antib odies. The Chothia humbering scheme (Chothia and Lesk, 1987;Al-
Lazikani et al., 1997)was applied to all the sequencesising AbNum In the case
of Faps, only the variable region was consideredfor further analysis. The Chothia
numberedvariable region sequencesvere patched bad into the PDB les to yield

567 numbered F, region structures.

Once the structure les were prepared with the Chothia numbering applied to
them, the accessibiliy of all residuesin the light and heary chainswas calculated.
SimonHubbard's naccessprogramthat implemerts the algorithm describedby Lee
and Richards (1971)was usedfor the calculation of accessibiliy. The accessibiliy
of all residuesin the Vy/V,_ complexand in the individual chains was calculated.

Those residueswhich sustainedany changein the accessiblesurface area were
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regardedas being interface residues.

5.2 Calculation of the packing angle

The padking anglewas de ned asthe torsion angle at the V,,/V_ interface. The

stepsinvolved in the calculation of the padking angle are as descriked below:

1. Identify a set of residuesSL and SH that are structurally consered in the

light and heavy chain respectively.
2. Extract the C coordinatesfor the residuesin SL and SH.
3. Find the certroid for ead set (CL and CH).
4. For eat set, computethe best-t line passingthrough the certroid.

5. Identify onepoint on ead line PL and PH on the samesiderelative to the

respective certroid.

6. Calculatethe padking angleasthe torsion anglebetweenthe points PL, CL,

CH, and PH.

Five antib ody light and heary chains were tted together on all residuesin the
variable regionusingProFit to idertify conseredresiduesat the V/V_ interface.
The badkbone represetations of the tted structures are showvn in Figures 5.2
and 5.3 respectively. The regionscolouredin blue correspnd to residuesthat are

highly consened acrossartib ody structures. Theseare L35-L38, L85-L88 in
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Perform rigid-body
superposition for a set
light and heavy chain

variable domains

v

Identify a set of structurally
conserved positions in each
chain - SL (light chain)
and SH (heavy chain)

y

Extract CA coordinates of
the residues in SL and SH

v

Find the centroid
for each set

v

For each set, compute
a best-fit line passing
through the centroid

v

Identify one point on each
line on the same side relative
to the respective centroid

!

Calculate packing angle as
the torsion angle between
these points

Figure 5.1: Algorithm to calculate the padking angleat the Vi, /V_ interface.
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Figure 5.2: Rigid body superposition of the C atomsin v e structures of the
light chain variable region. The structures usedwere: 12e8, 15c8, 1a0q, l1la3l,
la3r.
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Figure 5.3: Rigid body superposition of the C atomsin v e structures of the
heavy chain variable region. The structures used were: : loax, lyec, lyef,
2ddq, 8fab.
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Figure 5.4: The beta strands at the Vy/V,_ interface, best-t lines, and pading
angle.
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the light chain and H36-H39, H89-H92 in the heavy chain. These positions
form part of a beta-sheetwhich is at the core of the interface and outside the
hyper-variable loops. Figure 5.4 shaws the beta sheets,the best-t lines drawn

through them, and the pading angle.

The next step wasto calculate a best-t line for the points in SL and SH. Only
the coordinates of the C atoms were usedto compute the best-t line. The
method employed was Principle Component Analysis (PCA) and the calculations

were performedaccordingto the algorithm shown in Figure 5.5.

After calculation of the padking angleacrossthe 567structuresin the dataset, their
frequencydistribution was plotted and this is shovn in Figure 5.6. The pading
anglevariesquite considerablyacrosgdi erent structures. The smallestand largest
padking anglesobsened were3( and 60° in the structures 1FL3 (Simeonw et al.,
2000)and 1BGX (Murali et al., 1998)respectively. The extreme padking angles

are shawvn in Figure 5.7.

5.3 Identifying interface residues

Interface residuesfor the 567 structures were de ned as describked in Section5.1.
Owing to the variability in the Vi;/V_ padking angle, the interface residuesin
any given structure will be a subsetof the total set. A total of 124 positions
(63 light chain and 61 heavy chain positions) were identi ed as cortributing to

the interface in at least one of 567 structures. Figure 5.8 shows the plot of the
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1. For points in a set (SL or SH) calculate certroid C (CL or CH).

2. Compute the covariance matrix. The pseudaode for this is given below:

For i=0 to 3(number of dimensions)

Do
For j=0 to 3(number of dimensions)

Do
Total =0

For start=0 to 4 (number of points in set SL or SH)
Do

Total+=(  x[start][i] - Cii] ) *
( x[start][j] - C[il )

Done /* End of loop For start=0 to 4 */
Covariance(i,j) = Total/(number of points in SL or SH)
Done/* Endof For j=0 to 3 */

Done/* Endof For i=0 to 3 */

3. Perform an eigendecompsition for the covariance matrix. Calculate eigen
valuesand eigenvectors.

4. The eigenvector represeted by the largest eigenvalue is the best-t line
when it passeghrough the certroid.

Figure 5.5: Algorithm usedin the calculation of the best- t line for the light and
heavy chain variable regions.

190



Frequency

w
o
I

N
o
I

[ . oloo mnN”nH . |

Hﬂﬂ”nln

il

[nn

30

35 40 45
Packing angle

50

55

Figure 5.6: Frequencydistribution of the pading angle.
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(a) 1FL3

(b) 1BGX

Figure 5.7: Extreme pading anglesin (a) 1FL3 - 30° (b) 1BGX - 60°.
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Frequency distribution at interface: light chain
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Frequency distribution at interface: heavy chain
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Figure 5.8: Frequencydistribution of interfaceresiduesin (a) The Light chain and
(b) Heavy chain.
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frequencydistribution of interfaceresiduesin the light chain and heavy chain.

5.4 Predicting packing angle from interface residues

It was decidedto use a neural network to predict the padking angle from the
interface residues. Amino acids represeting the interface residuesin di erent
structures were used as input for the neural network and the output was the
padking angle. The processof training a network involvessupplying a set of input
patterns and the output (the result to be predicted) valuesto help the neural
network “learn' from the data. Oncethe network haspassedhe learning phase,it
is suppliedwith inputs for which it is expectedto make predictions of the output
values. The predictions of the neural network are comparedwith the actual values
and the performanceof the neural network is assessed.Here, a v e-fold cross
validation was performed. In this procedure,the neural network is trained on g‘
of the total data available and the quality of its training is evaluated by assessing
its predictions on the remaining % of the data. This is repeated on ead slice of

the data and the overall performanceis averagedover the v e folds.

The input is fed to the neural network in the form of numbers that represem
the amino acids at the interface. A common method of doing this is using a
20-dimensionalbinary vector represeting the 20 amino acids or values from a
similarity matrix. The binary vector cortains nineteen0Os and one 1 to indicate
a speci ¢ amino acid or valuesfrom a similarity matrix. The input layer sizeis

calculated as:
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Si=Naa Se (5.1)

whereS;, Naa, and Sg represem the Input layer size, Number of amino acidsand
size of the encaling vector respectively. As descrited above, there are a total of
124 potertial interface positions. By applying equation 5.1 and using 20 numbers

to represem one of the 20 amino acids, the sizeof the input layer would be 2480.

The total number of variablesin the network is de ned as:

Nv=(S Sn)+ (S So) (5.2)

where N, is the number of variablesin the network, S; is the number of nodes
in the input layer, S, is the number of nodesin the hidden layer, and S, is the
number of nodesin the output layer. If we usel0 hiddennodesand a singleoutput
node to represen the pading angle,then the number of variablesin the network
would be 24810. As a rule of thumb, it is recommendedo use 3N, patterns to
train a neural network. Hence,it would have ideally required data from about
75000structures to train and validate the network successfully Consideringthat
only about 570structures were available, | decidedto restrict the number of input

variablesby applying the following rules:

By using only 4 numbersto represem every amino acid instead of 20.

By limiting the number of interfacepositions(usedin training and validating
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the neural network) to 20 instead of 124.

The four numbers usedto represen every amino acid were chosenon the basisof

the following physical properties:

1. Sizeof the amino acid, in terms of the number of atomsin the side-tain.

2. Sizeof the amino acid expressedas the shortest path from the C atom to

the atom farthest away from it, i.e. the length of the sidedain.

3. Hydrophobicity

4. Charge

Table5.1lists the numbersusedto represem the 20di erent amino acids. The hy-
drophobicity scalesusedweretaken from the consensuvaluesreported by Eisen-
berg et al. (1982). | decidedto use a 4-dimensionalencaling vector with 20
interface residueschosenas being most likely to in uence the pading angle. By

doing this, the input layer sizewasreducedto 80 nodes.

Initially , @ manual selectionof 20 interface residuesmost likely to in uence the

padking angle made using the following setsof criteria:

Metho d | Highestchangein AccessibleSurfaceArea (ASA) in any onestructure.

Metho d Il Highestaveragechangein ASA

Metho d Il Most frequenly occurring positionswith highestchangein ASA
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Amino acid Size Size Hydrophobicity Charge

NS SP
Alanine (A) 1 1 0.250 0
Valine (V) 3 2 0.540 0
Leucine(L) 4 3 0.530 0
Isoleucine(l) 4 3 0.730 0
Proline (P) 3 4 -0.07 0
Methionine (M) 4 4 0.26 0
Pherylalanine (F) 7 5 0.610 0
Tryptophan (W) 10 6 0.370 0
Glycine (G) 0 0 0.160 0
Serine(S) 2 2 -0.26 0
Threonine (T) 3 2 -0.18 0
Cysteine (C) 2 2 0.04 0
Asparagine(N) 4 3 -0.64 0
Glutamine 5 4 -0.69 0
Tyrosine (Y) 8 6 0.02 0
Aspartate (D) 4 3 -0.72 -1
Glutamate (E) 5 4 -0.62 -1
Lysine (K) 5 5 -1.1 1
Arginine (R) 7 6 -1.8 1
Histidine (H) 6 4 -0.4 0.5

Table5.1: Amino acid propertiesfor size,hydrophobicity and charge. NS: number
of sidechain atomsin the amino acid; SP: shortestpath to the atom farthest away
from the C atom of the residue. 0.5 was chosenas the charge for Histidine to
represen the fact that it canexist in both chargedand uncharged states.
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Figure 5.9: Architecture of a fully connectednetwork. Not shown in the gure are
the connectionsbetween every pair of nodesin the input layer and hidden layer
and betweennodesin the hidden and output layer.

Metho d IV Most frequertly occurring positions with highest averagechangein

ASA

The top 10 positionsin ead chain (light and heary) weretaken and a 5-fold cross
validation was performed. Table 5.2 lists the interface positions that were manu-
ally selected.A fully connectedarti cial neural network was constructedwith the
architecture shown in Figure 5.9. Using the Stuggart Neural Network Simulator
(SNNS) the neural network parameters: learning function, update function, ini-
tialisation function, shuing and number of cycleswere varied and the following

valueswere found to be most optimal for the problem:

1. Number of cyclesof training - 150
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Method Interface positions
L34, L36, L44, L46, L50

L87,L89, 191, 196,98

H35, H47,H91, H100B, H100C
H100D, H100l, H100G, H100M, H103
L34, L36, L43, L44, L46

L86, L87,1L89, 91, L98

H35, H47,H91, H100B, H100C
H100D, H100G, H100l, H100M, H103
L32, L34, L36, L44, L46

L50, L87, 191, L96, L98

H45, H47, H50, H91, H99
H100,H100A, H100B,H101,H103
L34, L36, L38, L43, L44

L46, L87, L91, L96, L98

H39, H45, H47,H91, H99
H100,H100A, H100B,H101,H103

Method |

Method |1

Method |11

Method IV

Table 5.2: Manually choseninterface positions based on methods (I) Highest
changein ASA, (I1) Highest averagechangein ASA, (I11) Most frequerly oc-
curring positionswith highestchangein ASA, and (IV) Most frequenly occurring
positions with highestaveragechangein ASA.

2. Training until sum-of-square®rror (SSE) becomes<= 1.5

3. Init function - Randomiseweights

4. Learning function - RProp

5. Update function - Topological order

6. Pruning function - Magnitude pruning.

7. Shuing - TRUE

8. Number of hidden nodes- 10.

A neural network consistsof a set of “perceptrons'which generatevaluesbetween

0 and 1 using a sigmoid function applied to a weighted sum of the inputs:
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Method AveragePearson'scoe cient
over 5 folds

I 0.32

[ 0.38

[l 0.40

v 0.30

Table 5.3: Results of a 5-fold evaluation over interface positions chosenmanually
using the four methods descrited in the text. The correlation coe cien t reported
has beenaveragedover the 5 folds.

X
o=f ( WiXi) (53)

where O is the output of the perceptron,f () is the sigmoid transfer function, Xx;
is an input, W; is an weight and N is the number of inputs. | therefore decided
to represen all output values(pading angles)by a value betweenO and 1. The

scalingof padking angleswas done accordingto:

f = _min (54)

max min

where ; is the interface anglefraction, is the interfaceangle, max is the maxi-
mum obsened interfaceangle,and .,y is the minimum obsened interface angle.
From manual examination, it appearedthat shuing the training data (item 7
in the list of optimal SNNS parametersshovn above) while training the neural
network had a positive e ect. Howeer, this could not be usedwhentraining and
validating the neural network through scripts as it appearsthat this feature is

only supported by the graphical interfaceto SNNS.
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To ewaluate the performanceof the neural network, the Pearson'scorrelation co-
ecient (r) wasinitially usedto comparethe output of the neural network and

the actual scaledpading angle (betweenQ and 1):

)
My = " Dss, (5.5)

wherer,, is the Pearson'scorrelation coe cien t betweentwo variablesx andy,
n is the number of data points, x; and y; are the individual valuesof variablesx
andy, and s, and s, arethe standard deviations of the two distributions x andy.
Table 5.3 shaws the result of training and validating the neural network basedon
the manual selectionof interfacepositions. Noneof the methods to selectinterface
residuesmanually worked particularly well asthe Pearson'scorrelation coe cien t
for all methods was low. Howewer, from manual examination of correlation coef-
cients over singlefolds, correlation coe cien ts ashigh as 0.6 had beenobsened.
| thereforedecidedto have the computer samplesetsof interface positionsto nd

the combination that would be most predictive of the padking angle.

5.5 Using agenetic algorithm to sample the interface-

residue space

The use of a genetic algorithm (GA) for feature selection(i.e. to sample sets

of interface residuesand pick the most optimal set) appearedto be a potertial
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Figure 5.10: An individual to represet 10 interface positions. From the string
shown, thosealleleswith a 1 imply the inclusion of the residueat the respective
interface position for training and validation of the neural network.

solution to the problem of low scoresof manually selectedinterface positions.

The overall method of the genetic algorithm dewloped to sample the spaceof

interfaceresiduesis described below:

1. Create a random population of individuals whereead individual represeis
a set of interface positions, ead allele beinga 1 or 0 to indicate whether a

given interface position is included in training the neural net.

2. Evaluate the quality of ead individual by training and validating the neural

network over 5 folds (5-fold cross-alidation)

3. Create a new population of individuals by crosseer of high-scoringindivid-

uals.

4. Repeat the above stepsfor as many generationsas required.
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Figure 5.11: Crosswaer of two high-scoringindividuals A and B

The rst stepinvolvesthe creation of a random population of individuals. Every
individual is a string whoselength is the number of interface positions. It consists
of a setof Osand 1s (alleles) and represets a selectionof interface positionsto be
usedto train and validate a neural network. This is demonstratedin Figure 5.10.
The quality of ewvery individual is assessedy training the neural network and
averaging the Pearson'scorrelation coe cient over 5 folds. Initially, a random
population of individuals is createdand the quality of every individual is assessed.
A new population of individuals is then generatedby selective crossoverof high
scoringindividuals which is shown in Figure 5.11. Newly createdo spring individ-
ualsare subject to random mutations at a rate referredto asthe mutation rate ( ).
In this work, unlessotherwisespeci ed, a default mutation rate of 0.0001hasbeen
usedfor Rank-basedselection(SeeSection5.6). Oncethe random mutations have

beene ected, the o spring individuals becomechildren. These children become
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the parerts for the next generation. They are scoredby training and validating
the neural network and further generationsof the genetic algorithm progressin
the sameway. Thesestepsare repeateduntil the required number of generations

have beencompletedor the population has converged.

5.6 Metho ds of selection

In the processof creating o spring through crosseer, a bias is madetowards the
selectionof parerts that have high scores.There are marny selectionmethods for
choosingthe parerns and in this project, | primarily usedRoulette-wheel based
selectionand Rank-based selection. Theseselectionstrategieshave already been

addressedn Chapter 2.

Generation Best Pearson'sr

Rank Roulette-wheel

1 0.4964 0.4980
2 0.5039 0.5082
3 0.5039 0.5082
4 0.5007 0.5082
5 0.5039 0.5082
6 0.5167 0.5082
7 0.5159 0.5082
8 0.5122 0.5082
9 0.5581 0.5054

continued on next page
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continued from previous page

Generation Best Pearson'sr

Rank Roulette-wheel

10 0.5266 0.5082
11 0.5271 0.5082
12 0.5581 0.5054
13 0.5581 0.5054
14 0.5318 0.5082
15 0.5503 0.5082
16 0.5703 0.5082
17 0.5703 0.5054
18 0.5586 0.5082
19 0.5703 0.5082
20 0.5572 0.5082
21 0.5703 0.5054
22 0.5703 0.5082
23 0.5703 0.5082
24 0.5703 0.5082
25 0.5703 0.5082
26 0.5626 0.5082
27 0.5910 0.5082
28 0.5910 0.5082
29 0.5910 0.5054
30 0.5829 0.5082

continued on next page
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continued from previous page

Generation Best Pearson'sr

Rank Roulette-wheel

31 0.5870 0.5082
32 0.5910 0.5082
33 0.5910 0.5054
34 0.6006 0.5082
35 0.5910 0.5082
36 0.5946 0.5082
37 0.6149 0.5082
38 0.6006 0.5054
39 0.5910 0.5054
40 0.5910 0.5082

Table 5.4: Comparing Roulette-wheel and Rank-based
selectionmethods. The table shawvs the best Pearson'sr

calculated over 40 generationsof a GA run.

The e ectivenessof a selectionprocedureis largely assessedby the ability of the
procedureto keepthe population diverse(i.e. avoid local minima) and yet achieve
convergencein a reasonabletime span. To decideon the method best suited for
the current problem, | performed test runs of the GA on small populations of
individuals for short durations using both Rank-basedand Roulette-wheelbased
selectionmethods. Resultsfrom a samplerun are summarisedin Table 5.4. From

the table, it canbe seernthat the initial scoresnverenearly equal(0.496in Rank and
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0.498in Roulette-wheelbasedselection). Howeer, there is a steady increasein
best scorefor Rank-basedselectionwhereasthe best scoreremainslargely static
for Roulette-wheelbasedselection. It was therefore decidedto use Rank-based

selectionfor future runs of the GA.

5.7 Problems: Redundancy in individual popu-

lation and intelligen t selection

A problem with Rank-basedselectionthat becameapparert after a few tens of
generationsof the GA was that the population of individuals was becomingde-
creasinglydiverse. Figure 5.12ashows a graph of a GA run whereRank selection,
together with a mutation rate of 0.0001were used. The scoreof the bestindivid-
ual at the end of 50 generationswas 0.638. This could have meart either a) The
genetic algorithm was converging to a globally optimal solution, or b) The GA

was getting studk in a local minimum problem.

It was assumedthat the GA was getting studk in a local minimum and, as will
becomeclearfrom the following sections,this wasindeedthe case.l deweloped an

alternative method to alter the mutation rate dynamically during crosseer.

In Rank-basedselection, the creation of new child individuals is done by bias-
ing selectiontowards high-scoringparens. A crossoverpoint is chosenrandomly
within the parerts and the two parts of the parerts are combined to yield o spring

(Figure 5.11). When the number of redundart individuals in the population in-
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Figure 5.12: Redundancyof individuals in a GA run using Rank-basedselection
with (a) 5000individuals and =0.0001 (b) 1000individuals and =0.001.
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creasesthe chancesof choosing two identical individuals randomly for crosseer
alsoincreases.Crosswaer of identical individuals would clearly yield a child iden-
tical to the parernts. Sincethe mutation rate applied to the o spring individual
is very low (0.0001),the nal o spring are likely to be unchanged. Howewer, a
higher mutation rate ( =0.001) did not help curb the exponertial risein the num-
ber of redundart individuals with the passageof every generation. Figure 5.12b
shows that the population of individuals quickly saturatesand by the end of 60

generations,nearly the ertire population of individuals is redundart.

As a solution to the problem of individual redundancy | deweloped a combina-
torial approad. Parert individuals are selectedusing Rank-basedselection, but
a modi cation to the strategy of using a standard mutation rate was made so
that the mutation rate wasvaried dynamically, depending on how similar the par-
erts selectedfor crosseer are. The method, which | term Intelligent seletion, is

described below:

1. For ewery child individual to be created, select2 parerts P1 and P2 based

on Rank BasedSelection.
2. Choosea crossover point and spliceP1 and P2 to createa child O;.

3. Calculate the degreeof similarity Sip1.p) betweenthe parerts P1 and P2 as

given by:

Cio1.
(P1;P2) (56)

Sip1p2) = Np1r2)

where Cp1p2) Iis the number of active allelescommonbetweenP 1 and P2
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and Npp1p2 is the sum of active allelesin P1 and P2. When the two
parerts are completely identical, the similarity is 0.5 whereaswhen they

have no commonalleles,the similarity is O.
4. If (0.45<= Spi1pz <= 0.5),then swap veOsand 1sin O;.
5. If (0.35<= Sip1pz < 0.45),then usea mutation rate of 0.01on O;.
6. If (0.25<= Spp1p2 < 0.35),then usea mutation rate of 0.008.
7. if (0.15<= Sp1po < 0.25),then usea mutation rate of 0.005.

8. if (0 <= Sp1pz < 0.15),then usea mutation rate of 0.001.

| useda generationalreplacemen strategy in which the ertire population of par-
erts was replaced by children. In addition, I maintained a record of the best
parert from ewvery generation. By using generationalreplacemeny the interface
position spacecan be exploredbetter and by keepinga record of the bestindivid-
ual in ewvery generation,it was possibleto report the scoreof the best-performing

individual in the erntire GA run.

By varying the mutation rate, it becamepossibleto keepthe population diverse
and therefore sample many di erent conbinations of the possible interface po-
sition space'. Figure 5.7 shovs a comparisonof the performanceof Rank-based
selectionand Intelligent selectionfor similar runs of the GA using a population of
5000individuals over 50 generations.It must alsobe highlighted that the bestin-
dividual at the end of 50 generationsin Rank selectionhad a Pearson'sr of 0.638
while the Pearson'sr for the best individual after 50 generationsin Intelligent

selectionwas 0.63. In the limited test of 50 generations,the intelligent selection
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Figure 5.13: Comparing Rank and Intelligent selection strategies. Both plots
correspnd to GA runs with 5000individuals over 50 generations.
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Figure 5.14: Plot of the predicted interfaceanglefractions vs. the actual interface
angle fractions for the individual with the best Pearson'scorrelation coe cien t
(0.6442). Perfect predictions would lie on the blue dotted line.

method wasableto nd a bestsolution which wasjust asgood asthe bestsolution
from rank-basedselectionbut still maintained a diversepopulation to avoid local
minima. | decidedto perform all further GA runs using the intelligent selection

method.

5.8 Scoring the qualit y of each individual

Initially , the scoreof all individuals was evaluated as the Pearson'scorrelation

coe cien t betweenthe predictedand actual interfaceanglefractions. Howeer, the
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Pearson'sr is not very re ectiv e of the actual performanceof the neural network
in terms of the accuracy of predictions. This is demonstratedby the graph in
Figure 5.14which plots the actual interfaceanglefraction (between0 and 1) versus
the predicted interface anglefraction for the individual with the best Pearson'sr
(0.644). From the graph, it may be noticed that the errors (given by the distance
of the data points from the blue dotted line) in predictions for very low or high
interface anglesis large. Despite the large error, the Pearson'sr between the
actual and predicted interface angleis high. | therefore also assessethe quality
of every individual by meansof the error di erence between the predicted and

actual values. For this, | usedthe Root meansquareerror which is calculatedas:

RMSE= = (5.7)

whereRM SE is the root meansquareerror, X; is the actual interface anglefrac-
tion, and p; is the predicted interface angle fraction. The scorewas calculated as

1 RMSE.

Howeer, the RMSE was not re ectiv e of the actual magnitude of error. Sincethe
padking anglesare scaledto a value betweenO and 1, the RMSE is indicative of the
error at the scaledlevel and not in terms of the actual angular error in degrees.
Padcking anglesthat are either very low or very high and don't have su cient
represemation in the dataset tend to be predicted with high errors. Howeer,
this is not adequatelyre ected in the RMSE asthe overall RMSE over the ertire

dataset tends to be quite low owing to good predictions for a majority of the
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padking anglesthat are su ciently represeied in the dataset. This led me to
seart for an alternate statistic to scorethe quality of predictionssothat the error

in extreme padcking angleswould be re ected.

The relative RMS error (Masters, 1993)calculatesthe RMS value of the error and
takesthe ratio of this value with respect to the sum of the actual values. This is

computedas:

~cccoo<
~~
x
°
N—r
N

RELRMSE = p =0 (5.8)

whereRELR M SE is the relative root meansquareerror, X; is the actual interface
anglefraction, and p; is the predicted interface anglefraction. The Relative RMS
error is calculatedover v efoldsfor every individual and the scorefor an individual

is calculated as:

SCORE =1 RELRMSE (5.9)

From initial performancestatistics, it appearedthat the RELRMSE was much
more sensitive to errorsin predictions of small and large padking anglesthan the
RMSE and | decidedto assesgshe quality of all individuals using this statistic

instead of the RMSE or the Pearson'scorrelation coe cient r.
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Parameter Value

Neural network

Cyclesof training 150

SSEduring training <= 1.5

Init function Randomiseweighs
Learning function RProp

Update function
Pruning function
Shuing

NH

Genetic algorithm
Selectionmethod
Scoringmethod

Topological order
Magnitude pruning
FALSE

10

Intelligent selection
Relative RMS error

Table5.5: Standard parametersfor the Neural network and the Geneticalgorithm.
NH: Number of hidden nodes, SSE: Sum of squareerror.

5.9 Results of GA runs

5.9.1 Prediction the V4=\ packing angle

To summarise,a GA had beendesignedto perform feature selectionfor training
the neural network to predict the V4= padking angles. The tness function
for the GA was the performanceof the neural network evaluated over a v e-fold
cross-alidation and averagingthe scorescalculatedusing the Relative RMS error

over the v e folds.

Oncel had standardizedparametersfor the neural network and the geneticalgo-
rithm (summarisedin Table 5.5), | initiated large scaleruns of the geneticalgo-
rithm involving thousandsof individuals for seeral thousand generations.Owing

to the elaborate computationsinvolved in this, it typically takesabout 25 seconds
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to perform a 5-fold cross-alidation of an individual. The runs were performedon
largefarms over a period of seweral months. Problemswere encourtered at se\eral
stagesof the GA largely owing to issuesrelated to the Network le system(NFS).

This sloved down the overall speedof executionof the GA.

Individuals were chosento represen the following setsof interface positions:

All interface positions.

Interface positionsthat are part of the framework regions.

A geneticalgorithm run involving all the 124interfacepositionswasinitiated for a
population of 15000individuals. The run wasinitiated on the C2 on 10th of June,
2007 and terminated on the 16th of October, 2007. Sun Gridengine was usedto
distribute jobs acrossthe farm. Every job involves training and validation of a
neural network on a set of interface positionswhich is represeted by an individual

in the GA.

The performanceat the end of every generationwas monitored and is shovn as

graphsin Figure 5.15. The performancein the GA is assessetly two parameters:

The scoreof the bestindividual at the end of every generation.

The averagescoreof individuals in every generation.

When the averagescoreof individuals in the population increasesit is alsolikely
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Average scores in a GA run involving all interface positions

0.8

0.79 |

0.78 —

0.77— —

Average score in generation

0.76— |

0.75 : : :
0 500 1000 1500 2000

Generation

(a) Averagescorein every generation

Best score in a GA run involving all interface positions

0.83

0.81}~

Best score in generation

0.8051—

0.8

0.795 \ \ \ \
0 500 1000 1500 2000 2500

Generation

(b) Best scorein every generation

Figure 5.15: GA runs involving all interface positions. Figures shavn are (a)
Averagescorein ewvery generation(b) Best scorein every generation.
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GA Interface positions

Run type

All interface positions L38
L40
L42
L44
L46
L87
L99
H43
H52A
H55
H64
H100lI
H100K
H100M
H1000
H106

Table 5.6: Interface positions correspnding to the bestindividual from a GA run
involving all interface positions.

that o spring individuals produced by the crosseer of high-scoringindividuals

will also have a high score.

From Figure 5.15a, it can be seenthat the GA run registersa sharp increase
in the averagescoreinitially over the rst 50 generationsand then attens out
over the rest of the generations. A similar trend is obsenred for the best scores
(Figure 5.15b). The best scoreincreasessharply for the rst 50 generationsfrom
about 0.8 to a little over 0.82. Howewer, the best scoreover the ertire genetic
algorithm run was achieved in generation1086(a scoreof 0.821which translates
to a relative RMSE of 0.172). The interface positions represeted by the best

individual are shown in Table 5.6.
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GA Interface positions

Run type

Non-CDR interface positions L38
L40
L41
L44
L46
L87
H33
H42
H45
H60
H62
HI1
H105

Table 5.7: Interface positions correspnding to the bestindividual from a GA run
involving only non-CDR interface positions (CDRs de ned accordingto Chothia
(Al-Lazikani et al., 1997)).

5.9.2 Choosing key framew ork interface residues

In the caseof humanization of antib odies, murine CDRs are transplanted onto
a human framework region. This is usually done assumingthat the transfer of
murine CDRs onto the human framework region would confer the same speci-
cit y of the murine antib ody to the humanized antib ody. Howeer, residuesin
the framework regions anking the CDRs may have to be modi ed in order to
reinstate the binding speci city of the original murine artib ody to the humanized
antib ody (Riechmann et al., 1988). | therefore decidedto explorethe possibility
of predicting the padking angleby usingonly a conmbination of non-CDR interface
residues.Thus the main goal of this work wasthe iderti cation of key residuesin
the framework regionsthat would be deterministic of the packing angleand there-

fore aid in the engineeringof antib odiesto conferappropriate antigen speci city.
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Average scores in a GA run involving non-CDR interface positions
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Figure 5.16: GA runs involving non-CDR interface positions. Figures shavn are
(a) Averagescorein ewery generation(b) Best scorein ewvery generation.
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A geneticalgorithm run involving 64 non-CDR interfacepositionswasinitiated on
a population of 15000individuals on the Queen cluster. All the 64 positionschosen
are part of the framework region accordingto the Chothia numbering scheme.
Runs wereinitiated on the 10th of June, 2007 and were terminated on the 4th of
October, 2007. A total of 2166generationscompletedin this time period. Results
of the run are shawvn in Figure 5.16. The graphsfor the averageand best scorein
every generationare very similar in nature to the graphsinvolving GA runs for
all interface positions. The averageand best scoresincreasesharply for the rst

150 generationsand then stabilise for the remaining generations. The best score
of 0.833(a relative RMS error of 0.167)was rst seenafter 146 generations.The

interface positions represeted by the bestindividual are shovn in Table 5.7.

5.9.3 Jackning and analysis of errors of the best individ-

uals

| performeda jackni ng examination on the bestindividual which involved train-

ing the neural network over data from all but one structure and evaluating the
guality of the training by predicting the interface anglefor onestructure. Results
of the jackni ng run are shown in Figure 5.17. The graph plots the padking angles
predicted by the neural network againstthe actual interface anglesfor the best
individuals involving all interface positions (Figure 5.17a)and non-CDR interface
positions (Figure 5.17b). From the gures, it can be seenthat the majority of
the predictions are closeto the ideal line (represemed by the black dotted line).

It is well known that neural networks do not make good predictions on data that
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(a) All interface positions

(b) Non-CDR interface positions

Figure 5.17: Predicted vs. the Actual padking angle results for jackni ng of the
bestindividual from the GA runs for (a) All interfacepositionsand (b) Non-CDR
interface positions. Perfect predictions would lie on the bladk dotted line. The
line in red shaws the best-t regressionine for the data points.
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(a) All interface positions

(b) Non-CDR interface positions

Figure 5.18: Frequencydistribution of the error calculated as the di erence be-
tweenthe predicted and actual interfaceanglefor the bestindividual from the GA
run involving (a) All interface positionsand (b) Non-CDR interface positions.
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(a) All interface positions

(b) Non-CDR interface positions

Figure 5.19: Plot of errorsin pading angle prediction againstthe actual padking
angle (a) involving all interface positions and (b) involving non-CDR interface
positions.
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are sparselyrepreseted. This appearsto be the caseof predicting padking angles
that are lessthan 43 and greater than 5(°. For the remaining pading angles,
the predictions of the neural network are very closeto the actual padking angle.
This is further corroborated by the frequencydistribution plots for the errorsin
predictions shavn in Figure 5.18. The graph appraximates a normal distribution

with a peak around an error value of 0.

Further, to understandthe corresppndencebetweenthe actual padking angleand
the tendencyfor an error in the prediction, the squareof the error for ead pre-
diction was plotted against the actual padking angle. These plots are shavn in
Figures 5.19aand 5.19b for the bestindividuals identied from GA runs involv-
ing all interface positions and non-CDR interface positions respectively. The two
graphsare very similar and it may be seenthat the majority of the data points lie
closeto the X-axis. This reinforcesthe conclusionfrom the graphsin Figure 5.18
that the majority of predictions are made with very low error rates. Further, it
may also be inferred that the large errors are primarily seenfor either low and
high padking angleswhich do not have adequaterepresetation in the repertoire

of structures that constitutes the dataset.

5.10 Discussions and conclusion

In this chapter, | have de ned and analysedthe V, =\ padking angle. From
the runs of the genetic algorithms, | have iderntied a set of interface residues

(including the CDR residues)which can be usedto predict the Vy=\[ pading
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angle. Further, important interface residuesin the framework regionshave been
identied which in uence the padking angle and should therefore be considered
during humanization of antib odies. From the analysisand discussionspreseied
in the above sections,it seem<learthat correlationsexist betweenresiduesin the

Vy =\ interface and pading angle.

The results of this work canbe usedto model the framework regionsof antib odies
better by including the correct padcking angle betweenthe V, and V. domains.
This work alsohasapplicationsin humanization of artib odies. The list of interface
residuesin Tables5.6 and 5.7 may be therefore critical in maintaining binding
site topography. By modifying non-CDR residuesin the human framework and
replacing them with their courterparts in the murine antib ody, there are better
prospects of the humanized version retaining the binding a nit y of the murine
antib ody. Another future application of this work will beto setup a web-interface
to predict the padking angle. A sequencenay be submitted to a serer which would

then predict an angle.

Howewer, there are someremaining questions. The fact that the overall scoresof
the geneticalgorithm (and alsothe best scores)remain the samefor most of the
run suggestshat the GA may be caugh in a local minimum despite the use of
intelligent selectionto samplelots of di erent combinations of interface positions.
Another problem may be that the neural network is unable to learn adequately
from the input featurespresened to it. Sud a situation may be addressedby
altering the nature of input information represeting interface residuesto the

neural network.
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The errorsin the prediction of low and high interface anglesare quite large even
for the best individuals identi ed after seweral rounds of the genetic algorithm.
In practice howewer, this is not an uncommonproblemin the eld of neural net-
works asthe identi cation of a singlehighly preciserule that appliesto all data is
usually very hard. An easiersolution is to identify more general rulesof thumb'.
The procedurefor doing this is called boosting (Haykin, 1994). In this method,
di erent subsetsof data are usedto train a learning algorithm and generalrules
are identied for eat subset. At the end of the procedure,all the generalrules
are combined to yield one concreterule. There are seweral implemenations of
boosting algorithms, the most notable amongst them being AdaBaost (Freund

and Scapire, 1996a;Freund and Scapire, 1996b).

Howewer, despitethe shortcomings,the neural network is able to predict the ma-
jority of padking anglessuccessfully The limitations posedby the network in
predicting pacing angleswhich are not adequatelyrepreseted may be addressed

by over-represetation of data for the extreme padking angles.
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Chapter 6

Conclusions

In this thesis,| dewloped tools and performedanalysisof antib ody sequenceand
structure. First, | described a method to assesshe "humanness'of antib odies.
Next, | preseried a method to number antib ody sequencesnd a modi ed num-
bering shemeto accommalate structural insertions and deletionsin the frame-
work regionsof the antib ody variable region. Third, | described an analysis of
the antib ody padking angle at the interface of the light and heavy chain variable

domainsand a method to predict this angle.

6.1 Assessing humanness of antib odies

In the work to assesshumanness'of antib odies, | comparedmouseand human

antib ody sequences.Frequencydistribution plots of human and mousepairwise
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sequencadentities with human sequencesevealssigni cant overlapsasshown in
Figures 3.3 and 3.4. Further, Z-scoreswere calculated and chosento represen
how typically “human' an antib ody sequencas. Comparisonof the mouseand hu-
man Z-scoredistribution showved that a signi cant portion of the two plots overlap
(Figures 3.5 and 3.6) indicating that many mouseantib odies are more typically
human-like than somemouseantib odies. Analysis of the Z-scorefrequencydis-
tribution of human germline genesshawved that certain germline genestend to be
usedmore frequerily than certain others (Figures 3.5and 3.6). As a nal step, |

analysedthe correlation betweenthe Z-scoresof therapeutic antib odies and their
tendencyto be immunogenic. Overall, this examination appearedto suggestno
clear correlation betweenZ-scoresand the AAR (anti-antib ody response)of ther-
apeutic antib odies. While high humannessscoresn humanizedartib odiesappear
to give low AAR, the sametrend does not hold for Chimeric antib odies. Anal-
ysis of the antib ody sequencegor prominent T-cell epitopes using SYFPEITHI

did not show signi cant di erences betweenimmunogenicand non-immunogenic

antib odies, but further work in this areawould be useful.

A potential problem with the current method of calculating humannessis that it
is basedon the Kabat databasewhich may have introduced a bias towards anti-
bodies against speci ¢ targets. Howeer, the fact that the frequencydistribution
plots of pairwiseidertities betweenhuman antib odiesroughly resentle a Gaussian
distribution and further, that human germlinegenegend to have high humanness
scoressuggestghat the biasis not a major issue. As more clinical data becomes
available, the idea of correlating humannessscoresof therapeutic antib odies and
AAR should be revisited. Future work should also extend the analysisto the

larger set of sequenceswvailable in IMGT and recert work by an undergraduate
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studert in the lab to analysehumannessof antib odies extracted from the IMGT

databaseindicatesthat the nature of the graphsare not signi cantly di erent.

Part of work from this chapter was publishedin Abhinandan and Martin (2007).

6.2 Analysis of antib ody numbering

From the analysis of antib ody variable-regionstructures, | found that approxi-
mately 10% of sequencesn the manually annotated Kabat databasehave errors
in the numbering. Giventhe fact that the publicly available Kabat data have not
been updated since July 2000, the availability of reliable numbering is the key
reasonwhy peoplestill usethesedata. The major alternative sourceof antib ody

sequencalata (IMGT) doesnot provide numbered sequenceles.

| have beenableto suggestcorrectionsto the positions of insertionsand deletions
in the framework region in comparisonwith the Kabat standard locations that
are usedin both the Kabat and the Chothia numbering schemes.| have therefore
proposeda new numbering sdheme (See Table 4.14) that extends the Chothia

analysisto correct the positions of indelsin the framework regions.

The AbNum numbering program has been thoroughly tested and bendmarked
and can be usedto apply numbering sthemesto antib ody sequencesvith a very
high level of accuracy AbNum was able to number 99% of sequencesand we

beliewe that in all casesdiscrepanciesrom the manual numbering in the Kabat
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databaseresulted from errors in the Kabat databaseand not in AbNum By
simply supplying di erent data les, Chothia and Kabat numbering schemescan
be applied, ascan my modi ed Chothia schemewith structurally correctindelsin
the framework regions. Thus the program can be usedreliably to apply standard
numbering sthhemesto sequences IMGT thereby enhancingthe usefulnes®f this

resource.

Although mosterrorsin the manual Kabat annotations have beencorrected,there
are still a number of sequenceshat cannot be numberedby the program AbNum
(See4.12). While the ranking of pro les at the start and end of the framework
regionsimprovesthe performanceof the numbering program, a ranking schemefor
pro le-sets would help improve the coverageof sequenceshat can be annotated

automatically.

An alternative approad, which would be likely to overcomemany of the problems
encourered in positioning the pro les, would be to scoreand align the pro les
against the sequenceusing global dynamic programming. This would have zero
gap penaltiesapplied when separationbetweenthe pro les is within the obsened
rangeswith a ne penaltiesappliedoutsidethis range. This approad would ensure
that pro les are not positioned out of sequenceand would probably simplify the

code considerably

The work hasbeenpublishedin (Abhinandan and Martin, 2008).

231



6.3 Analysis of packing angle at the Vy/ V_ inter-

face

The Vy/ V. paking anglehasbeende ned asthe torsion angleat the interface of
the light and heavy chain variable region. Analysis of the padking anglehasshavn
that it canvary by up to 30° and approximates to a normal distribution. Neural
networks, together with feature selectionusing genetic algorithms has proved a
successfuapproad to predicting the padking angle. This con rms the hypothesis
that the interfaceresiduesare important in de ning the padking angle. The best
neural networks are able to predict the padking anglewith an RMSE of 2.4° and a
Pearson'scorrelation coe cien t betweenthe predicted and actual interface angle
of 0.65. Howe\er, there are shortcomingsin the prediction of low or high interface
anglesasthe errorsin thesepredictions are quite large despiteseeral cyclesof the
geneticalgorithm. The use of boosting may alleviate this problem. In addition,
over-represetation of data for the extreme padking anglesmay alsohelp improve

the quality of predictions.

During runs of the geneticalgorithm, | noticed that the population of geneswas
becomingincreasinglyredundart after every generation. In order to addressthis
problem, I dewloped the method of intelligent selectionto maintain diversity.
In addition, | used generational replacemeh wherein an entire parert popula-
tion of chromosomesds replacedby a population of children. This was done with
the intention of increasingthe sampling of the interface position space. How-
ewer, the performanceof the genetic algorithm did not improve as signi cantly

as might have beenexpected. The performancemay have beenbetter had elitist
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replacemeh beenusedwherethe best genefrom ewery generationof the genetic
algorithm is retained (even if it is from the population of parerts). It would be
interesting to executelarge runs of the genetic algorithm with elitist selection
and analysewhether this represetts a better solution of searting through the
interface-position space. Howewer, despite the shortcomings,the neural network

is able to predict the majority of padking anglessuccessfully

In summary the work in this thesis has deweloped a new method for analysing
humannessof antib odies which has potertial applications in selectingand de-
signing antib odies for usein vivo. A new method for automatically numbering
antib odies has beendeweloped and de cienciesin the Kabat databasehave been
highlighted. Analysis hasled to the introduction of a re ned chothia numbering
scheme. Finally, analysisand prediction of Vi, / V. padking angleshasapplications
in antib ody modelling and the feature selectionhighlights interface residuesthat

may be important in humanization.
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