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Abstract

Therapeutic monoclonal antibodies (mAbs) are a successful class of biologics in the

treatment of cancers, autoimmune diseases and others. However since the first anti-

body treatments were developed in 1986, only about 144 mAbs have gained clinical

approval from regulatory bodies at the time of writing. A contributing factor to this

is that their discovery pipelines and clinical trials can be subject to late-stage fail-

ures due to developability issues, which, in brief are a mAb’s intrinsic ability to

be produced at scale and tolerated by the patient. Concurrently, libraries of paired

heavy and light chain antibody sequences have been collected from next genera-

tion sequencing of human, or genetically engineered mice, repertoires. This thesis

hypothesises that by using antibody language models, the developability features

of clinically approved mAbs and library antibodies can be compared and used to

screen library antibodies for new therapeutics.

As a result, a triaging pipeline has been constructed where a library of antibody

sequences are input, and undergo the following processes: physiochemical feature

triaging based on sequence statistics; unsupervised learning to identify antibod-

ies with similar features to clinical mAbs; prediction of physiochemical properties

using linear models and supervised learning to predict which would pass clinical



trials, and which are therefore good candidates for new therapeutics. This pipeline

hopes to improve the chances of a given mAb to reach the clinic through identifying

candidates with good developability profiles early in the selection process.

Furthermore this thesis has worked to develop upon antibody annotation lan-

guages where a graphical drawing program for multispecific antibodies was written

in order to encourage their development and improve the consistency of cataloguing

their formats. This work has already been employed by the World Health Organi-

sation International Non-proprietary Names Committee and is applied to new and

historic applicants to clinical trials.
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Impact Statement

Therapeutic antibodies have demonstrated their utility in treating many diseases

which threaten human health organisations including cancers, auto-immune dis-

eases, and recently have been used as emergency treatments for Covid-19. Anti-

bodies can be raised against antigens of interest, making them useful for targeting

any part of a disease pathway. However what becomes important is to screen can-

didates for developability issues which can hinder a drug’s ability to be tolerated

by the patient or produced at industrial scale. Furthermore, overcoming these de-

velopability issues during candidate selection does not guarantee that a drug will

be successful at clinical trials, as 75% of antibody therapeutics fail at this stage .

The cost of entering a new biologic to the clinic is estimated at $2.6 billion (USD)

and so late-stage failures result in lost time and expenditure which could have been

invested in a more successful candidate.

Consequently, developability prediction has been used to avert these issues,

and bioinformatic pipelines have been published and can be licensed to pharmaceu-

tical companies in stages of lead candidate selection. The shortcomings of these

current pipelines is that their statistics are either based on simple sequence statistics

which are poorly informative, or computationally expensive structural modelling,



which is unsuitable for high-throughput screening and can only be applied to lead

candidates. This thesis aims to address the problem of high-throughput developabil-

ity prediction by using antibody language models which can encode sequence and

structural information learned through training on millions of sequences quickly to

find features correlated with previously successful antibody drugs. The advantage

of high-throughput screening for developability prediction is that developability can

be considered at a stage earlier than lead candidate selection, and can be applied to

libraries generated from immunization campaigns and phage display, to identify the

most suitable candidates based on developability.

The work has potential to impact a number of stakeholders. Firstly, it will ben-

efit research into antibody developability, demonstrating that language models can

be used to identify antibodies with favourable developability profiles. Secondly the

pharmaceutical companies aiming to bring new therapeutics to the clinic will benefit

by this pipeline de-risking the road to the clinic and causing fewer expensive late-

stage failures. Thirdly, if this pipeline is successful in bringing more therapeutics

to market, it has large ramifications for patient outcomes if improved therapeutics

which are better tolerated are introduced.
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Chapter 1

Introduction

This chapter aims to give the reader a sufficient background on antibodies, their ge-

netics and structure, explaining where antibodies come from and how they can be

collected to assemble libraries. After this, the introduction covers therapeutic anti-

bodies, developability and developability prediction. These sections are necessary

to engage with the results chapters of the thesis.

1.1 Introduction to Antibodies

Antibodies, or immunoglobulins (Ig), are large ‘Y’-shaped proteins that play a ma-

jor role in the adaptive immune system’s response to infection [1]. They carry this

out by binding to antigens with high affinity and specificity to neutralise them or ini-

tialise the formation of a membrane attack complex [2]. Antibodies consist of four

chains: two identical heavy chains and two identical light chains, where the variable

domains of the heavy (VH) and light (VL) chains interact to construct an antigen bind-

ing region. Although antibody amino acid sequences are highly conserved, points

of diversity give an antibody its specificity. Consequently, monoclonal antibodies
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(mAbs), antibodies with the same binding affinity and specificity, are useful tools in

experimental reagents, imaging, and therapeutics. mAbs have become an important

class of biologic drugs capable of treating a variety of diseases including cancers,

autoimmune diseases and recently, Covid-19 because they can target specific steps

in a disease pathway [3, 4]. This thesis introduction covers antibody structure and

function, the introduction of mAb therapeutics and developments to improve their

discovery pipelines and functionality.

1.2 Antibody Genetics, Structure and Function

Antibodies are produced by B cells, each producing an antibody with a heavy and

light chain unique to clones of that cell [4]. While all immune system cells origi-

nate from heamatopoetic stem cells in the bone marrow, B cells undergo a unique

differentiation that is dependent on their ability to generate functional antibodies.

At each stage of B cell maturation, if the antibody produced is not functional or

the antibody binds to self-antigen expressed in the bone marrow, the differentiating

B cell will commit apoptosis as part of the negative selection against non-functional

antibodies [5]. This section will detail how those antibodies are produced and how

diversity is introduced.

There is no single gene to code for antibodies, nor does each possible antibody

have its own gene embedded in somatic cells. In fact, there are many genes that

encode the regions of the antibody that are recombined during the process of B cell

differentiation. At the IGH chain locus on human chromosome 14, a selection is

made for one of each of 39 IGHV (variable), 27 DH (diversity) and 6 JH (junction)
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genes, which are recombined to give a full VH domain in the heavy chain. For the

light chain, there are two loci offering a greater diversity for selection, one for IGK

on chromosome 2 for κ light chains and IGL on chromosome 22, offering 40 V-

kappa with 5 J-kappa, and 32 V-lambda and 4 J-lambda gene segments respectively

[6]. For both VH and VL domains, it is standard to the V region gene to trace the

‘germline family’ which genes the antibody has come from.

Heavy chains have one variable domain (VH) and a dependable number of con-

stant domains (CH1 , CH2 , CH3 , CH4 ), usually with a hinge region between the

CH1 and CH2 domains (except for antibodies of the IgM and IgE classes), whereas

light chains have one variable domain (VL) and one constant domain (CL). These

chains interact so the two heavy chains interact at the bottom prong of the ‘Y’

shape, which are then made up of the interaction of the hinge regions and constant

regions. This gives the Fc fragment of the antibody. Furthermore, light chain and

heavy chain pairs interact to form one fork of the ‘Y’ shape each, which makes up

the Fab regions of the antibody, which is the interaction of the variable domains,

and the CH1 and CL domains (Figure 1.1a). Lastly, the variable region (Fv) is where

interaction of the VH and VL domains of the antibody takes place. This interaction

gives the antibody its antigen-binding properties. The Fv region of the antibody

demonstrates a high level of polymorphism in sequence and local structure, which

is achieved through rearranging and selecting the genes that express the antibody

inside the B cells which produce them [4, 7].

Within each VH and VL domain of the protein, there are three hypervariable

loops known as ‘complementarity determining regions’ (CDRs) that have the most
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Figure 1.1: Antibody topology. a) IgG antibody showing heavy chains in blue and light
chains in green. Domains have been labelled and fragments including Fc, Fab
and Fv have been labelled. b) Fv fragment showing VH and VL domains as rib-
bons, highlighting the complimentarity determining loops in red at the interface
of the domains [13].

interaction with the antigen and therefore are attributed the most importance in bind-

ing. CDR1 and CDR2 of the VH and VL regions of the protein are both located within

the V gene segments and their structures follow canonical classes that have been rel-

atively well characterised [8, 9]. However, the CDR3 sequence overlaps both of the

V and J segments in the VH and VL domains, with the addition of the entire D gene

segment in the VH CDR3 loop (CDR-H3). In addition, junctional diversification

occurs where insertions or deletions at these junctions contribute to even greater

diversity and, in turn, high to binding affinity (Figure 1.1b)[10, 11, 12].

Before a B cell matures, it undergoes a series of checkpoints in the bone mar-

row, including pairing the heavy chain with a surrogate light chain, and an immune

checkpoint to ensure that the antibody produced does not bind to self-antigens, a

mechanism which fails in autoimmunity [14]. If these checkpoints are passed suc-

cessfully, the pre-B cell may proliferate and then begin rearranging the light chain
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genes in attempts to pair them, starting with a κ light chain. In cases where the light

and heavy chain do not pair, the cell may either iterate its κ light chain recombi-

nation or switch to a λ light chain genes. If, after this recombination, the resulting

combinations fail to pair, or the antibody is found to bind to the self-antigen, the

cell undergoes apoptosis. Otherwise, the cell progresses to an immature B cell and

is released into the blood and lymph tissue [12].

Initially, B cells produce antibodies of the IgM and IgD classes, which are gen-

erally low-affinity antibodies which then undergo somatic hypermutation. When

signalled through interleukin T cell-dependent pathways, the antibody may switch

classes to either IgG, IgE or IgA antibodies by switching the constant region do-

mains that are expressed with the antibodies. The genes encoding these domains

are found in a locus downstream of the variable domains and ordered: IgM, IgD,

IgG, IgE and IgA. Appropriate constant domains are selected by removing the

protein-coding sequences that are before it in the locus. For example, if an anti-

body switched to IgE: the genes encoding IgM, IgD and IgG classes and subclasses

would all be removed but the gene for IgA would remain, but not be transcribed.

The chosen class can depend on cytokines signalled to the B cell [15].

The mature B cells producing high affinity antibodies will go on to differentiate

into memory cells. During differentiation into memory cells, somatic hypermuta-

tion may occur to generate higher affinity antibodies, usually belonging to the IgG

class [4]. Once the antibody becomes highly specific to a given target, clones of

the same antibody will continue to be made by the memory cells upon reactivation

through encountering the original antigen that caused those antibodies to be raised.



1.3. Antibody Libraries 7

To study this diversity and how these sequences of different lengths relate back

to the original germlines and to compare residues in a position in relation to another

sequence, numbering schemes were developed as opposed to traditional sequence

alignments. As of 2024 there are five established schemes which have been pub-

lished and adopted by researchers: Kabat [8]; Chothia [16]; Martin (also known as

enhanced Chothia) [17]; AHo [18], and IMGT [19] which aim to apply antibody

numbering in different scenarios by allowing different substitution and insertion

mutations as well as changed definitions of CDR loops [7]. For instance, the IMGT

numbering scheme is harmonized across antibody VH and VL domains and T Cell

receptor variable domains, whereas the Chothia numbering scheme is more focused

on structural alignment by incorporating the canonical CDR loops.

Taking this into account, there are numerous stages of B cell maturation where

diversity may be introduced to the B cell receptor sequence. Estimates of the poten-

tial diversity of the antibody repertoire have varied between 1013 [20] to 1015 [21]

through to 1018 [22]. Whatever the actual number may be, the importance of it is

that the potential diversity is astronomically large and full of useful sequences for

antibody applications. The next section will explore how collected data is starting

to explore this space and how these datasets may be mined for those sequences.

1.3 Antibody Libraries

Although having an antibody with a known antigen is useful information, it does not

give immediate clues as to how to pair other antibodies with antigens. It was not

until phage display, a screening method in which a large number of antibodies stored
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in physical libraries could be screened against an antigen of interest simultaneously

and binding antibodies could be identified. These libraries are built by taking known

sequences of antibodies obtained from Sanger sequencing. While these would have

been limited in number, the library could be augmented by cloning and diversifying

these sequences through multiple sets of amplification primers [23].

Phage display works by expressing different VH and VL domains on the surface

protein coat of M13 bacteriophages as a single chain Fv (scFv) fragment. This is

where the VH and VL domains are conjugated by an artificial peptide linker. The

antigen of interest is be bound to a plate where the phage with a binding antibody

variable domain will bind. Successive rounds of ‘panning’ where antibodies are

allowed to bind to the target are carried out. Antibodies which do not bind are

washed away with a buffer solution then antibodies which do bind are eluted from

the solution with a low-pH buffer to stop the interaction between the antigen and

bound phages. The phages that remain are then amplified to increase the number of

binders. Antibodies that bind after successive washes of increasing concentration of

buffer solution are expected to be rare strong binders within the library and can then

be recovered and characterised [24, 25]. Display libraries have powerful applica-

tions to search for an antibody which binds to an antigen of interest . While phage

display can offer large libraries (HuCAL offers up to 1011 [26, 27]), the chances

of success of phage display are dependent on the quality and diversity of the li-

brary used [27]. Phage libraries require appropriate conditions including -80°C and

protection from environmental factors for long-term physical storage.

Other research has been conducted on how the repertoire of B cell receptors
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changes between age groups or in response to immunological challenge or im-

munisation. This work has been accelerated through improvements in single cell

RNA sequencing allowing unpaired and paired antibody sequences to be recorded

[28, 29, 30, 31, 32]. As a byproduct of this work, digitally stored libraries of hun-

dreds or thousands of paired antibody DNA or amino acid sequences have been

made available as a resource, mostly through the Observed Antibody Space (OAS)

dataset [33].

Although protocols for single-cell B cell repertoire sequencing may differ be-

tween studies, they are mostly based on the same principles. Donor B cells may

be collected from human blood samples, isolated, and then encapsulated in droplets

[28] or loaded into flow chambers containing only one cell [34]. Paired libraries

of VH and VL sequences are then generated after reverse transcription PCR and se-

quencing of amplicons [28, 35].

Furthermore, pairing heavy and light chains becomes possible through the use

of DNA barcoding the transcripts of individual B cells, allowing them to be traced

back to a single cell. Knowledge of pairing is important for understanding how

the repertoire generates its diversity and effects [36]. This work has suggested that

pairing between heavy and light chains may not be a random process and that some

favoured pairings may be more stable [28], something that was previously demon-

strated in smaller datasets [37]. However, it is acknowledged that what is captured

in these datasets is only a fraction of the potential diversity that was discussed in

the previous section as these datasets are usually technologically limited to around

10,000 paired sequences [35]. Therefore, efforts to explore this space are needed to
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make use of this data.

There has also been much commercial interest in generating libraries using

antibodies sequenced from immunised animals and human patients to screen them

for useful sequences. Although several studies have made these data available, it

is likely that there are many proprietary datasets that are not in the public domain

for commercial or privacy reasons [38]. For example, Kymab generate around 106

sequences per week (personal communication). These proprietary datasets are gen-

erated either by sequencing particular groups of patients with potentially strong

immune systems or by introducing novel mutations to existing sequences and aug-

menting the data to provide added value to these libraries [39]. Hypothetically, such

libraries designed for specific applications have a higher chance of finding antibod-

ies that have clinical potential, rather than the snapshots taken in generating more

general antibody libraries.

1.4 mAb Therapeutics

The potential of antibody-based therapeutics was postulated long before their first

regulatory approval. Between 1891-1896 Ehrlich described a hypothesis for the

formation of antibodies (then antitoxins) as a ‘magic bullet’, meaning a drug that

was perfectly suited for a specific target without side effects. These ideas were later

applied by Behring and Kitasato in serum therapies for diphtheria and tetanus where

the blood of animals exposed to weakened bacteria was inoculated into patients and

offered immunity in future disease challenges [40].

While this offered hope that these therapies can be applied, there were short-
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comings that Ehrlich would not have been aware of. Firstly, the antibody response

produced in nature is polyclonal, which means that many different antibodies pro-

duced by different B cell lineages are made against the same infectious agent chal-

lenge, each with a different binding affinity that makes the process suboptimal and

difficult to quality control. Secondly, due to the size and molecular complexity of

antibodies, inoculating antibodies from one organism to another runs the risk of

generating an immune response against those foreign antibodies, even if the organ-

ism is the same species. Thirdly, inoculating with serum could also risk infection

with blood-borne diseases.

The first of these points was addressed by producing monoclonal antibodies

(mAbs), which are clones of the same B cell with producing the same antibodies

binding to the same epitope of an antigen with the same binding affinity [41]. This

was especially directed toward the IgG class of antibodies as these are circulating

antibodies that, after undergoing rounds of somatic hypermutation, bind to their

antigen with a higher affinity than IgM. Kohler and Milstein became the first peo-

ple to publish a method of producing mAbs using the hybridoma technique, where

B cells that produce antibodies of the same lineage are hybridised with immortal

myeloma cells. The resulting hybridoma would then produce and secrete many

copies of the same antibody which is much easier to screen for quality and develop

into a clinical therapeutic [41].

Despite the inception of mAbs, mass production of antibodies using hybrido-

mas is not feasible, so production of mAb therapeutics is done as any other bio-

logic drug is made. The antibody coding genes are excised into a bacterial plasmid
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that may be transfected into, and expressed by a variety of eukaryotic cell lines

on an industrial scale in a production culture. Most often it is the Chinese Ham-

ster Ovary (CHO) cell line [42]. This made it possible for the first licensed mAb

drug, Muromonab, to be approved by the US Food and Drug Administration (FDA)

and released in 1986. This was a murine IgG antibody (OKT3) used to treat kid-

ney transplant rejection by targeting the CD3 cell marker expressed by T cells and

suppressing the immune response [43].

Although this was an incredible breakthrough in biologic drug design, there is

still a significant risk that using a murine antibody for a drug in humans will lead

to an immune response. However, in the case of kidney transplant rejection, it is

likely that these patients will also be taking other immunosuppressive drugs, and so

patients are less likely to mount a response in the first place. The phenomenon of

immune response to mAb therapeutics causes great concern in their development

pipeline. This immune response, known as an anti-antibody response (AAR), and

the increase in anti-drug antibodies (ADAs) in the blood means that future admin-

istrations of that drug will be eliminated before the drug exerts its desired effect

[44, 45, 1].

Before the first murine antibody therapeutic was approved for use, chimeric

antibodies were developed using mouse variable domains conjugated to human con-

stant domains [46]. The importance of this process was not only a reduced chance of

immunity, but also the ability of mAb drugs to effect downstream effects via the hu-

man Fcγ receptor with immune recruitment, complement and recruited basophil de-

granulation [47, 48]. Humanized antibodies take this principle a step further, and are
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the result of grafting mouse CDRs onto human variable domain frameworks, again

leaving the constant regions as human [49, 50]. ‘Back mutations’ are usually neces-

sary to recreate some of the murine framework residues important for the structure

and orientation of the CDR loops after humanization, which is usually done through

computational analysis or artificial phage display libraries to find residues and po-

sitions which minimise immunogenicity and maximise binding. This offered a new

method of reducing the immunogenicity of mAb therapeutics and allowing the drug

to tackle a host of new drug targets that did not require immunosuppression.

While the majority of therapeutic mAbs have arisen from these immunisa-

tion programs, phage display became useful to screen many antibodies against the

antigen of interest simultaneously [24, 25]. This technique is useful as a high-

throughput screen to identify leads in drug screening programs, and to make anti-

bodies a more feasible class of biologics. At least 17 approved mAb therapeutics

have emerged from phage display including Adalimumab [51], Necitumab [52] and

Avelumab [53, 27]. Furthermore, fully human antibodies can be produced from

transgenic mice strains including the HuMab Mouse [54] and XenoMouse brought

about by deleting or silencing the chromosomal loci which express mouse antibody

regions and introducing human antibody genes using yeast artificial chromosomes

[55, 56]. Successful drugs from this method of discovery include Ipilimumab [57],

Brodalumab [58] and Cemiplimab [59].

More recently, Tixagevimab and Cilgavimab are antibodies isolated from re-

covered human Covid-19 patients that were given FDA approval to treat the same

condition [60, 3]. This story has demonstrated the value for the human antibody
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repertoire to be mined for potentially useful antibody sequences, particularly in re-

covered patients as a method of quickly responding to outbreaks of a new pathogen,

or finding individuals with rare immunities to cancers or neurodegenerative diseases

despite genetic predispositions.

Often, any antibody recovered from organisms, phage display libraries, or sin-

gle B cells will undergo some sort of optimisation such as affinity maturation to

maximise its binding ability or to minimise developability liabilities. General ap-

proaches to this include taking the lead antibodies and diversifying them by in-

troducing mutations to the VDJ genes from which the antibody was transcribed

through error-prone polymerase chain reaction [61]. Furthermore, these new mu-

tants can be recombined with different chains by shuffling, as was the case in gener-

ating the HuCAL phage display library [62, 27]. These follow the assumption that

these mutations may have a combined synergistic effect to increase the affinity of

the antibody [63]. Phage display is then used again to identify the antibodies that

bind the strongest to the antigen. These are then taken forward into pre-clinical and

clinical trials [64].

The process of drug market approval is to recruit participants into clinical trials

that measure the effectiveness of the drug against another treatment or a placebo.

Usually, three phases, increasing in scope and participant number, are undertaken

before approval is sought from regulatory bodies [65, 66]. By the time a drug

reaches Phase 2 trials, it will usually be given a generic name by the World Health

Organisation International Nonproprietary Names Committee (WHO-INN). These

names are general terms used to describe drugs that are not linked to a particular
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brand and are constructed from a set of syllables. Previously for mAb therapeutics,

they end in the ‘mab’ suffix, with an indication of their source: ‘omab’ for mice;

‘ximab’ for chimeric; ‘zumab’ for huamnized and ‘umab’ for fully human antibod-

ies. However this naming scheme was retired in 2017 due to market perceptions

that fully human antibodies are better and the advent of more complex constructs

which required a new naming scheme before the finite possibility of names is ex-

pended [67]. The new naming scheme now adopts the ‘-tug’ and ‘-bart’ suffixes

for unmodified and artificial immunoglobulins respectively as well as ‘-ment’ and

‘-mig’ suffixes to denote antibody fragments and multispecific antibodies.

Using data from clinical trials, the sponsor, which is usually a pharmaceutical

company, will apply to regulatory bodies such as the FDA for approval to use the

drug in those jurisdictions for a specific indication. If the data demonstrate that

the mAb gives a benefit that outweighs its potential risks, it will receive market

approval; however in 75% of cases of all mAb therapeutics in clinical trials [68],

the drug does not show efficacy in a clinical setting and will be discontinued or

repurposed by the pharmaceutical company. The process of developing a biother-

apeutic and taking it through clinical trials is estimated to cost around $2.6 billion

(US Dollars), so drugs which fail at these later stages become hugely expensive for

the sponsors1.

Antibodies are now becoming a fast-growing sector of the biologics market

and FDA-approved therapeutics are used to treat a wide range of ailments such as

cancers, autoimmune diseases and infection, including Covid-19 [3, 65]. The ther-

1https://phrma.org/-/media/Project/PhRMA/PhRMA-Org/PhRMA-Org/PDF
/P-R/proactive-policy-drug-discovery.pdf

https://phrma.org/-/media/Project/PhRMA/PhRMA-Org/PhRMA-Org/PDF/P-R/proactive-policy-drug-discovery.pdf
https://phrma.org/-/media/Project/PhRMA/PhRMA-Org/PhRMA-Org/PDF/P-R/proactive-policy-drug-discovery.pdf
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apeutic mAb market received a valuation of $210 billion (US Dollars) in 20222. At

the time of writing, IMGT [19] reports 130 currently approved Whole mAb ther-

apeutics. Additionally, three market-approved multi-specific antibodies (MsAbs):

Blinatumomab (bispecific T-cell engager; [69]); Catumaxomab and Emicizumab

(both bispecific IgGs); [70].

Engineering to express the antibody only as an scFv, or a chain of conjugated

scFvs have many advantages including a reduced chance of immunogenicity on a

number of fronts: scFvs are much smaller than a full immunoglobulin and therefore

less likely to be identified by the immune system; the Fc fragment is not present

to mediate downstream effects [71]. Additionally, these engineered molecules give

the option of designing intracellular drug delivery systems through internalisation of

scFvs [72]. However, if the Fc fragment is required to prolong half life of the drug,

proprietary Fc silencing mutations that are introduced including LALA, LALAPG

and STAR have shown greater ability of reducing Fc-mediated immune recruitment

through inhibiting interactions of the Fc domain with the Fcγ receptor [73, 74].

These mutations have demonstrated better ability at reducing immune recruitment

over using what was traditionally thought of as silent isotypes such as IgG4. Fur-

thermore, the ability to design sequences de novo or generate diversity within a

sequence using generative language models has now brought about a new possibil-

ity of where future therapeutics may come from [75, 33].

2https://www.grandviewresearch.com/industry-analysis/monoclonal
-antibodies-market

https://www.grandviewresearch.com/industry-analysis/monoclonal-antibodies-market
https://www.grandviewresearch.com/industry-analysis/monoclonal-antibodies-market
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1.5 Multi-Specific Antibodies

The success of mAbs in the clinic has inspired antibodies with multiple specificities

to be put into clinical trials. These are non-natural, engineered molecules which

can bind to two or more antigens [76]. The inception of these molecules started

with the quadroma by fusing two different hybridoma cell lines used to generate

mAbs. This fusion could generate a product where during heavy chain pairing, a

heterodimer from the formation of the heavy and light chains of one antibody with

another heavy and light chain of a different antibody would result in an antibody

with two different antigen binding regions. However, this was a wasteful process as

the correct assembly was only one of 10 possible products of the pairing of heavy

and light chains this way [77, 78].

Consequently, efforts for more scalable synthesis have led to new techniques of

multi-specific antibody (MsAb) generation [79]. DNA recombination has allowed

greater flexibility in the design of MsAbs with IgG-like formats, which can be done

by appending additional scFvs, or camelid single domain VHH fragments (nanobod-

ies) at the N-terminus or C-terminus of the heavy and light chains using engineered

linkers [80, 76, 81]. All of these can give rise to symmetrical antibodies in which

the correct pairings of light and heavy chains are not disfavoured, as seen in the

quadroma.

Alternatively, asymmetric antibodies can be produced by introducing muta-

tions that encourage heterodimerization of heavy chains or specific pairings of

light and heavy chains with different specificities. Additional residue mutations

for knobs-into-holes (KIH) formats [82] are typically used to form heavy chain
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heterodimers by introducing mutations in the CH3 domains, while introduction of

positively and negatively charged residues in the CH1 and CL domains of one arm

[83] helps in the correct pairing of light and heavy chains to make the desired asym-

metric antibody format more favourable [79].

Protein engineering also allows the generation of smaller fragment-based

MsAbs including 2-chained diabodies or Bispecific T-Cell Engagers (BiTE) [84].

These non-IgG-like molecules are advantageous because they are easier to produce

(requiring no glycosylation), but they are limited by short half-lives, which can be

extended through human serum albumin (HSA) fusion, PEGylation (addition of

polyethylene glycol), or the addition of cysteine residues which form disulphide

bonds [85, 86]. Antibody-drug conjugates (ADCs) have become popular for de-

livering small molecule drugs to an intended target [87]. Most recently chemical

conjugation by thiol-thiol or amide-amide linkers for ligating antibody fragments in

this way has been seen in the ‘Dock and Lock’ and by ligating two IgG molecules

to give IgG-IgG molecules [79, 88]. Moreover, conditionally active mAbs which

require cleavage of a protein or chemical linker to begin activity in response to

a change in environment pH, temperature, or presence of an enzyme in a tumour

microenvironment [89, 90].

In addition, molecules based around T cell receptors and fusions of these with

scFvs (such as the ImmTAC format) are becoming popular and being able to de-

scribe and draw these is becoming more important [91]. While only a handful

MsAbs have thus-far been given regulatory approval (all bispecifics), many more

are in development and in clinical trials [66, 68]. Given the huge diversity of pos-
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sible MsAb formats, a standardized format for description and annotation would be

advantageous, for example when they are submitted to the WHO-INN or for regu-

latory approval. For small-molecule drugs, ‘Simplified Molecular-Input Line-Entry

System’ (SMILES) strings [92] have been adopted as a standard for describing or-

ganic molecules. As yet, no such standard has been widely adopted for biologics.

The Hierarchical Editing Language for Macromolecules (HELM) [93] was in-

troduced in 2012 as a general tool for describing biologics (including antibodies).

It provides a visual editor and has the support of a number of large pharmaceutical

companies including GlaxoSmithKline, Merck, Roche and Pfizer. Nonetheless, it

has only gained limited traction in the annotation of antibodies and is not currently

used by regulatory authorities, the WHO-INN, or the Chemical Abstracts Service

(CAS) for description of antibody-based drugs. Current limitations which make

HELM less suitable for MsAbs an inability to notate different specificities of given

Fv on the structure; inability to notate modifications or mutations in a given domain;

and additional complexity to support other macromolecule biologics. Furthermore,

rather than allowing the user to draw a schematic for an MsAb using simple domain

blocks, the HELM editor requires amino acid sequences in an attempt to draw a

schematic automatically.

1.6 Developability Prediction

Despite success and developments in discovery and lead optimisation, still many

mAbs fail to be suitable drug candidates. It is important that antibodies taken as

leads are considered “developable” from their inception, where they can be pro-
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duced on large scales, remain stable enough for storage and tolerated by the patient

[94]. This is why the process comes with a high rate of attrition. Although antibody-

based therapeutics make up a large number of current clinical trials, this does not

guarantee that the drug will succeed in trials, as 75% are discontinued before mar-

ket approval [68, 45]. Usually, the reasons why a drug fails clinical trials are not

directly reported but are most likely due to: a lack of clinical efficacy; the immune

response of the patient causing a loss of effect in the drug; adverse reactions to the

drug or failure to produce an adequate titre of the drug at scale. However, com-

mercial reasons, including funding withdrawal and poorly designed trials, can also

cause a drug to be discontinued from trials [3]. As these commercial reasons are

difficult to learn from as they are rarely reported, this has driven research into the

physicochemical properties of mAbs which contribute to their chances of approval.

Several physicochemical features of antibodies have already been identified as

possible contributors to in their approval as drugs. Possibly the most important of

these is the propensity of the antibodies to aggregate. For example, the propensity

for drug aggregation contributes to poor shelf life and immunogenicity, as it forms a

large structure when aggregated in the blood [95]. The difficulty is then to untangle

what exactly drives this aggregation propensity.

Although impurities in drug formulation may contribute to aggregation, more

attention has been paid to the sequence and structure features of antibodies them-

selves [96]. Several of these features have already been identified. Thermostability

(∆G) is a measure of the likelihood that a protein will misfold at high tempera-

tures. Proteins with poor thermostability and high feasibility of spontaneous un-
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folding will have a high propensity to aggregate to maintain the distance between

their hydrophobic residues normally present in their cores and the aqueous environ-

ment. Patches of charged or hydrophobic residues will also encourage aggregation

in a similar manner, especially if they happen to be in the CDR loops, as these are

exposed residues on the antibody surface. Post-translational modification ligation

including glycosylation [97, 98]; deamidation [99] and oxidation [100] also present

risks in protein stability that could result in instability or could incite an immune

response in their own right [101].

Methods for measuring some of these developability characteristics in vitro,

include differential scanning fluorimetry (DSF) assays to measure thermostability,

and their melting temperature [27], hydrophobic interaction chromatography (HIC)

to measure the hydrophobicity of proteins, and dynamic light scattering (DLS) to

measure the propensity for aggregation [102, 103, 3]. However, the nature of these

assays requires expensive protein expression at a suitable concentration and timely

assays, meaning that it is impossible to run these tests in a high-throughput discov-

ery pipeline, and so they are usually reserved for a small number of candidates that

are found to bind to the target. As mentioned previously, another consideration for

an antibody drug is its immunogenicity. Despite this phenomena being observed

since the beginning of antibody therapeutics, there is a poor understanding of why

a mAb would be immunogenic, and even scarcer data on the subject except for

the proportion of patients that mount anti-drug antibodies to new therapeutics for a

select few mAbs [104].

Although introducing mutations to these sequences may improve one of these



1.6. Developability Prediction 22

characteristics, it may have a negative impact on another, which has recently

brought about understanding that these features are closely related and that anti-

bodies with developability characteristics must occupy a space where all of these

properties are in a tolerated range: a so-called “developability web”. Despite a

mAb performing well in an in vitro setting, this does not guarantee success in clin-

ical trials and most will be discontinued due to poor efficacy, safety concerns such

as anaphylactic shock, or resistance due to immunogenicity. This raises even more

questions and blurs the line between if a drug is unsuccessful because of poor clin-

ical efficacy or because of mounting an immune response.

The drive to overcome these approval barriers has led to many investigations

into the properties described above and software has become available to predict

the properties of naı̈ve antibody sequences in silico using only their sequence. This

allows for faster and cheaper high-throughput screening of candidates to evaluate

which are more likely to be successful before they are taken to trials. The Developa-

bility Index [105, 106] was the first to offer scoring for aggregation propensity by

identifying regions prone to aggregation using homology modelling to calculate the

isoelectricity and solvent-accessibility-dependent spatial propensity with a scaled

value. However, they also realised that they did not take into account the effect

that post-translational modifications could have on the aggregation propensity of an

antibody.

Attempts by Hebditch and Warwicker [107] to use computational means to pre-

dict physicochemical characteristics related to developability from an experimental

data [102] set showed a weak correlation of predictive ability with experimental
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data, but it has still been published for other researchers to use [107]. This has been

confounded with previous efforts for the prediction of immunogenicity, which are

mainly based on predicting the similarity of a given sequence to mouse sequences

[108, 109, 104].

More recently, the Therapeutic Antibody Profiler (TAP) [110] was created as a

development scorer, again generating a model of the antibody to assess surface-

exposed hydrophobic or charged residues in the CDR loops to assess aggrega-

tion propensity. The Deane group used 242 clinical stage therapeutics and the

database used to train TAP to understand the levels of hydrophobicity and aggrega-

tion propensity seen in clinical antibodies. Another recent method was produced by

Negron et al. [111], the TA-DA pipeline which demonstrated an ability to separate

clinical mAbs from a large library of naturally occurring antibodies by assessing in

silico calculated properties correlated with clinical mAbs to calculate a developa-

bility score [111]. Although these are promising for candidate selection, the TAP

software only assesses one antibody at a time and requires computationally expen-

sive modelling, making it unsuitable for examining a large library, and the TA-DA

algorithm has not been made available for use.

1.7 Hypothesis and Aims

With the landscape of antibody database expansion and pairing changing with the

advent of B cell repertoire sequencing, tools are required for high-throughput drug

screening that can be applied to paired VH and VL antibody sequences. We aim

to develop a pipeline of software that can overcome current barriers to therapeutic
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mAb approval by promoting early selection of leads with developability profiles

that match previously approved mAbs to reduce the risk of failure later on in the

clinical trials setting. Transcriptomic sequencing has been instrumental in build-

ing antibodies libraries that are used in the screening of new possible candidates.

New methods of representing antibodies, including large language models (LLMs)

trained on antibody sequences, are ways of learning subtle sequence patterns that

may represent features that are not yet understood. It is the aim of this work to

apply machine learning and deep learning to antibody sequences using these mod-

els to compare approved and discontinued datasets and to compare how these differ

from the repertoire antibodies.

This project has been inspired by the need to develop an end-to-end bioinfor-

matic pipeline that can make use of the large libraries of paired antibody sequences

that are emerging from next-generation sequencing platforms. This pipeline should

also have the capacity to analyse many sequences together for a high-throughput

screening of candidates. This means that it will have to avoid modelling the anti-

bodies to save computational time and work on sequence-based statistics only rather

than modelling structures of antibodies. Consequently, it is proposed here to use en-

coding of antibody sequences by antibody language models and applying machine

learning predictors to capture meaningful differences between library and clinical

mAb drugs to better understand the reasons why some drugs become successful and

others do not. In addition, the thesis attempts to address the problem of describing

complex structures of (typically) MsAb-based drugs by further developing the An-

tibody Mark-Up Language developed in the Martin group and developing a drawing



1.7. Hypothesis and Aims 25

display tool to work with AbML.

The first results chapter, Chapter 3, will cover separating clinical antibodies

from repertoire sequences using both supervised and unsupervised learning using

antibody language model encodings. Chapter 4 will examine using the antibody

language models encodings to train linear models to predict physicochemical prop-

erties of clinical stage antibodies. Chapter 5 will then look at training binary clas-

sifiers on market approved mAb therapeutics and clinical stage mAbs which were

discontinued at clinical trials. Chapter 6 then looks to combine the results from the

previous chapters into a bioinformatics pipeline to detect antibodies with developa-

bility characteristics and are likely to pass clinical trials. An antibody repertoire

dataset is used as an example input for this pipeline. Chapter 7 then outlines the

developments in antibody annotation, AbML and abYdraw.



Chapter 2

Materials and Methods

2.1 Online Datasets and Resources

This chapter will describe the antibody sequence datasets and specialist antibody

tools that were used throughout the project.

2.1.1 abYsis

abYsis [112] is a server that hosts 5896 paired human sequences taken from solved

Protein Data Bank structures, and EMBL-ENA databank [113] and the Kabat anti-

body sequence database [114]. The server also hosts a number of useful antibody

analysis tools including AbNum, abYmod and annotation for post-translational

modification recognition sites.

2.1.1.1 AbNum

To number antibodies, AbNum is a tool supplied by the abYsis server which is

capable of numbering VH and VL sequences according to the Kabat, Chothia, Martin,

IMGT and AHo schemes. AbNum works by splitting the sequence into framework
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and CDR loops using profiles derived from the Kabat database [114]. The profiles

are slid across an input sequence to find the best match, to define anchor points in

the sequence. AbNum then numbers the sequence from each pair of adjacent anchor

points until a site where insertions are allowed is found. Any remaining residues

are then given insertion codes [17].

2.1.1.2 abYmod

abYmod is another tool offered by abYsis where homology models are generated

for the antibody framework regions and CDR1, CDR2 and CDR-L3 loops through

templates of the Chothia canonical classes [16] selected as best sequence iden-

tity matches from the PDB. To find an appropriate loop for CDR-H3, the program

searches a database of CDR-H3 loops from antibodies, but if no loops with the same

length are found, it searches a database of loops from all proteins having appropriate

takeoff geometry. It selects examples by correct length, ranks by sequence identity

and inserts the top ranking loop into the template. Side-chains are modelled from

the outside to the centre of the binding site using the minimum pertubation proto-

col [115]. The Gromacs energy minimization software [116] is used to optimise the

model by removing side-chain clashes and errors in grafting loops to the framework.

abYmod is available as a web server 1.

2.1.2 TheraSabDab

TheraSabDab is a publicly available dataset of therapeutic antibodies with assigned

WHO-INN names [117]. Heavy chain and light chain sequences are reported, as

1abymod.abysis.org/

abymod.abysis.org/
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well as their current stage of clinical trials, approval or discontinuation, and the

target of the antibody. This dataset collects sequences from the WHO-INN [67].

TheraSabDab was accessed in October 2021.

2.1.3 Observed Antibody Space

The Observed Antibody Space is an online repository of paired and unpaired VH

and VL sequences compiled from studies that have resulted in large-scale repertoire

sequencing [118, 33]. However, these studies have several methods for pairing

antibody sequences and focus on a number of patient responses after exposure to

different pathogens, including SARS-CoV2 [29], HIV [30] and Cytomegalovirus

[32] as well as healthy patients [31], which can skew the observed result. OAS was

accessed in June 2022.

2.1.4 Anti-Drug Antibody data

A dataset from Marks et al. [104] and Clavero-Alvarez et al. [119] assembled ADA

incidence for therapeutics taken from clinical trial data found on DrugBank [120].

These data are simply reported as a percentage of patents in a trial that appeared

to demonstrate an ADA titre above a given threshold used in that study. However,

there can be disagreement between trials on the threshold to report ADAs, and in

some cases multiple numbers for the same drug have been reported across trials. In

the case of multiple incidences, the mean reported incidences was given. The result

was a list of incidences for 217 therapeutics.



2.2. Statistical Tests 29

2.1.5 Pure2

Data was taken from Stewart et al. [121] where B cells were isolated from three

healthy male blood donors were isolated and sorted into developmental stages with

distinct phenotypes using fluorescence-activated cell sorting. The transcriptomes

were sequenced to generate 10X Genomics v3.1.0 libraries through CellRanger 2.

Three additional donors had blood collected and data from their B cell repertoires

representing an older cohort HB91 (male, 77 y.o.), HB86 (male, 69 y.o.) and HB7

(female, 68 y.o.) were added to the Data taken from Stewart et al. [121] as provided

by Franca Fraternali and her group. Antibodies were paired by a unique cell barcode

and in cases where multiple different chains were observed with the same barcode,

the chain with the highest count was taken as the true antibody. In total, 10,492

paired antibodies were extracted from the six patients as an ideal example dataset

for our pipeline to work on.

2.2 Statistical Tests

2.2.1 Mann-Whitney U test

The U test is a null hypothesis test carried out on two populations to determine

whether they are statistical different, similar to a parametric t test. The U test is

a nonparametric test, meaning that it does not assume a normal distribution of the

two samples, which in the case of physicochemical property data may be the case.

The values of both populations are combined into a single dataset and ranked from

smallest to largest and the U statistic is calculated for each group and the final

2https://github.com/10XGenomics/cellranger

https://github.com/10XGenomics/cellranger
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U statistic is then given as the minimum of the U statistics of both groups and

compared to the critical value (p < 0.05) to determine significance (Equation 2.1).

A lower value rejects the null hypothesis, meaning that the samples are different,

where the opposite is true for a higher value [122].

Ux = mn+
m(m+1)

2
−Rx (2.1)

Uy = mn+
n(n+1)

2
−Ry (2.2)

U = min(Ux,Uy) (2.3)

• x and y are two populations

• m and n are the number of data points taken from populations x and y respec-

tively

• Rx and Ry is the sum of ranks from populations x and y respectively

• Ux and Uy are the respective U statistics of two populations whereas U is

given as the minimum of these two

2.2.2 Independent (Unpaired) t test

An unpaired t test is used to determine the statistical significance between two pop-

ulations where the data points within those populations are unrelated. Firstly the

means, and variances for both groups are calculated and the t-test formula (Equa-

tion 2.4) is used to calculate the t-statistic. This statistic is then compared to a
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critical value (p < 0.05) to either accept or reject a null hypothesis that the dif-

ference between groups is large enough to be statistically significant. Similarly to

the U test, a lower value rejects the null hypothesis, meaning that the samples are

statistically different [122].

t =
x̄− ȳ√
s2

x
nx
+

s2
y

ny

(2.4)

• x and y are two populations

• x̄ and ȳ are the sample means of populations x and y.

• s2
x and s2

y are the sample variances of populations x and y.

• nx and ny are the sample sizes of populations x and y.

2.2.3 χ2 Test

The χ2 (Chi2) test is is a measure of statistical differences between two categorical

variables, whether the frequencies of an event in those categories differ from ex-

pected frequencies, assuming the variables are independent. The null hypothesis is

that there is no association between the two variables. For each test, the squared

difference between observed and expected is taken, and divided by the expected

frequency giving a χ2 value for each observation (Equation 2.5). The sum of all χ2

values is taken and compared to a critical value (p < 0.05), with degrees of freedom

corresponding to the number of independent comparisons, to either accept or reject
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the null hypothesis.

χ
2 = ∑

(Oi −Ei)
2

Ei
(2.5)

• i is the instance of an observation

• E and O are the expected and observed frequencies respectively.

2.2.4 Multiple Testing Correction

In cases where many null hypothesis tests are conducted, the false discovery rate

or the chance of finding a significant value due to chance is increased. Therefore,

in some cases, an adjusted p-value (q-value) was calculated using the Benjamini-

Hochberg (BH) method [123].

• p-values are ranked in ascending order

• A BH critical value for each p-value is calculated using the following formula

where q is the critical value, p is the current p-value, n is the number of

samples, and r is the rank of the current p-value (Equation 2.6).

q =
pn
r

(2.6)

• For each p-value and critical value, the largest p-value which is larger than its

critical value is significant, and all others smaller than it are significant.

This method of controlling false discovery rate was chosen because it is less con-

servative than the Bonferroni method, allowing additional sensitivity to discoveries
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and because it is easy to implement in Python.

2.3 Physicochemical Feature Representation

2.3.1 Identifying CDR-H3 Loops

Antibody binding has largely been attributed to the complimentarity determining

region loop three of the VH domain (CDR-H3) because it is the single most diverse

region between sequences, residing on the overlap of the Variable, Diversity and

Junction gene segments [124, 125]. CDR-H3 regions were identified by numbering

VH chains with AbNum and identified using the Kabat, Chothia or Martin defini-

tions. This thesis used the Chothia numbering scheme definitions of CDR-H3 to

capture the start (H95) and end (H102) of the loop.

2.3.2 Thermostability

Thermostability is an important element of developability because proteins with

low stability are more likely to unfold and expose hydrophobic residues, leading to

aggregation [126]. Gibbs’ Free Energy (∆G) of unfolding (henceforth called ∆G) is

a measure of the feasibility of a protein spontaneously unfolding with higher values

less likely to unfold than lower values. Although there are many in silico tools

for prediction that rely on structural or machine learning models [127], these are

unsuitable for high-throughput screening because of the compute power required to

build models. Therefore, this statistic was calculated for each antibody sequence

using the Oobatake method, where experimental values for ∆H and ∆S for the each

residue are summed across a protein sequence and the free energy of unfolding
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is calculated using Gibbs’ Free Energy equation (Equation 2.7). ∆H and ∆S are

derived from empirical data to model the hydration energy of different residues

during protein unfolding, based on the surface accessible area of the residue. Taken

together, this means that hydrophilic residues have a negative ∆H and ∆S because

of the favourable reaction to hydrogen with water molecules, while the opposite

is true for hydrophobic residues because of the unfavourable interaction of water

molecules. Values for ∆G are given in kJ mol−1

∆G = ∆H − (T +273.15) ·∆S (2.7)

• ∆H is enthalpy calculated through summing experimental values for each

residue across a sequence.

• T is temperature in Centigrade taken as 25°C as performed in the original

paper [128].

• ∆S is entropy calculated through summing experimental values for each

residue across a sequence.

2.3.3 Isoelectric Point

The Isoelectric point (pI) is the pH required for a net-zero charge of a polypeptide.

It depends on the dissociation constant (pKa) of the seven charged amino acids (pos-

itive: R, H, K; negative: D, C, E, Y) as well as the N and C termini. The method

of calculating pI was taken from the IPC software [129] which uses experimen-

tally obtained peptide pKa values from the EMBOSS database [130] substituted
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into a rearranged Henderson-Hasselbach equation. The equations are iterated using

different values of pH, starting at 6.5, and the results of the termini and each of

charged residues are summed together. If the sum is 0±0.01, an isoelectric point is

reached, otherwise, the iteration continues either increasing the pH if the summed

net charge was positive or decreasing the pH if it was negative. While this does not

take into account protein structure, the IPC method was chosen because it calculates

pI quickly and the code was integratable into the pipeline.

The rearranged Henderson-Hasselbach equation for negatively charged amino

acids (Equation 2.8):

n

∑
i=1

−n
1+10pKa−pH (2.8)

The rearranged Henderson-Hasselbach equation for positively charged amino acids

(Equation 2.9):

n

∑
i=1

n
1+10pH−pKa (2.9)

• i refers to an ionisable group of a molecule. For instance, a given amino acid

in a sequence

• n is the count of that particular amino acid in a sequence

2.3.4 PTM Sites

Sequence recognition sites for PTMs are potential risk factors for poor developa-

bility and homogeneity and may increase the immunogenicity of antibody drugs.
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Table 2.1: Regular expressions used to identify post-translational modifications in amino
acid sequences

PTM Regular Expression
N-Linked Glycosylation “(N)(?=.[STC]”
Amidation “(.)(?=G[RK][RK])”
Tyrosine Kinase Phosphorylation site “[RK].{2,3}[DE].{2,3}(Y)”
Deamidation “(N)(?=G)”
Asparagine deamidation “(D)(?=[PSNHD])”
Methionine Oxidation “(M)”
Hydroxylation “(?<=C.)([DN])(?=....[FY].C.C)”
Protein Kinase C phosphorylation Site “([ST])(?=.[RK])”
Protein Kinase CK2 Phosphorylation Site “([ST])(?=..[DE])”
ATPase Site Phosphorylation “(D)(?=KTGT[LIVM][TI])”
Aspartate hydrolysis “(D)(?=P)”

Regular expressions taken from abYsis [112] (Table 2.1) and adapted from Vatsa et

al. [131] and Xu et al. [132] were used to search for recognition sites for a selection

of post-translational modifications and report where they occur within the antibody

sequences.

2.3.5 Key residues

Work by Laffy et al. [133] proposed that antibodies with a propensity to form Beta

pleated sheets in the CDR-H3 region were more likely to be promiscuous and there-

fore may have off-target binding or poor binding ability. They identified a set of

residues within the region that would increase the likelihood of this occurring: 100

L; 100B D; 100C H; 100E W (Chothia numbering definition). These residues were

identified within sequences from the numbering obtained from AbNum.
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2.3.6 Cluster Residues

Surface clusters may increase the likelihood of protein aggregation and immuno-

genicity. ClusterResidues3 was written by Andrew Martin and works to cluster

residues on a given metric. The sequence is mapped to the structure of a reference

antibody HyHEL-5 (PDB: 1yqv) [134] to calculate the solvent accessibility for each

residue and the distances between each residue. The distance between residues to

be considered a cluster, the number of residues to be considered a cluster, and the

thresholds for solvent accessibility can be tuned to change what is considered on

the surface of the molecule. In this case, groups of three or more residues with a

relative solvent accessibility of >25% within 4.5A of each other were considered a

cluster if they are hydrophobic or unusual.

2.3.6.1 Hydrophobic Clusters

The first characteristic calculated with ClusterResidues was hydrophobicity using

scores for each residue calculated by Eisenberg [135]. The threshold for hydropho-

bicity is default set at >0.05 on the Eisenberg scale, however this could be tuned.

2.3.6.2 Unusual Clusters

The second characteristic reported with ClusterResidues was the clusters of unusual

residues, which were defined as clusters of residues which occur less than 5% of

precalculated frequencies from sequences stored in abYsis at those positions [112].

3github.com/ACRMGroup/clusterResidues

github.com/ACRMGroup/clusterResidues
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2.3.7 Solvent Accessibility

Solvent Accessibility was calculated using pdbsolv4, which uses the Lee and

Richards method of calculating Accessible Surface Area (ASA) using the rolling

ball model [136] (Equation 2.10). pdbsolv gives an accessibility value as a relative

percentage for each residue in a pdb file compared with a G-X-G extended peptide,

where X represents that given residue.

Accessibility = A/4πr2 ·100 (2.10)

A = ∑(R/
√

R2 −Z2
i ) ·D ·L (2.11)

D = ∆Z/2+∆
′Z (2.12)

• L is the length of the arc drawn on a given section

• Z is the perpetual distance from the centre of the sphere to the section i

• ∆Z is the space between the sections

• R is the radius of the sphere given by the sum of the Van der Waals radius of

the atom

2.3.8 Germline Identification

Assign Germline (AGL) was used in cases where germline genes needed to be as-

signed to antibody sequences. The software uses germline DNA data obtained from

IMGT [113] to align sequences and assign the relevant region gene. This operation

4www.bioinf.org.uk/software/bioptools

www.bioinf.org.uk/software/bioptools
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can be done for V, D, J, and C genes, but for the purposes of this thesis, it was

used only for V region identification. It selects a gene using the logic that if two or

more germline genes with the same sequence identity score were found for a given

sequence at the protein level, the germline family with the lowest family number

would be selected based on lower family numbers that were likely discovered first

and therefore likely to be more numerous. AGL was developed by Andrew Martin

and is available for download on GitHub5.

2.4 Methods of scoring Antibody Immunogenicity

2.4.1 HScore

The HScore (Humanness Score) [108] was implemented by aligning an input se-

quence with all human Heavy, Light κ or Light λ sequences in the KabatMan

database [114], producing a mean alignment score. Then the mean of means of

all human:human alignments was subtracted from that value and divided by the

standard deviation, to give a Z score of the similarity of that sequence to the others,

which gives the final humanness score. A high HScore means that a sequence is

more representative of human sequences than the average and is expected to be less

immunogenic than a sequence with a low HScore, which corresponds to an anti-

body that is less representative of human sequences and is more likely to generate

an immune response. This software is available online6

5github.com/AndrewCRMartin/agl
6www.bioinf.org.uk/abs/shab/

github.com/AndrewCRMartin/agl
www.bioinf.org.uk/abs/shab/
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2.4.2 GScore

Secondly, the GScore (Germline humanness) [109] was developed using the

same principles as HScore, but instead grouped sequences derived from specific

germlines were grouped and Z scores were calculated for each germline using

alignments from BLAST [137]. Newly inputted sequences are aligned against each

germline V gene, and a GScore is given for each of these germline families ranked

by smallest first, which is presumed to be the correct alignment. In cases where

GScore was used, the highest ranking score was always taken. GScore is available

online 7.

2.4.3 Hu-mAb

Hu-mAb is used as a comparison immunogenicity score, which instead calculates a

score between zero and one [104]. Hu-mAb gives a score for each V-gene germline

and if that score is above the threshold set by Youden’s J statistic [138], then the

program classifies it as human. For each set of results, the highest score was selected

and assigned to each chain. Hu-mAb is available online 8.

2.5 Methods of Encoding Protein Sequences

2.5.1 Residue Level Encodings for Protein Sequences

Details of residue-level encodings length are given in Table 2.2.

7www.bioinf.org.uk/abs/gscore/
8opig.stats.ox.ac.uk/webapps/sabdab-sabpred/sabpred/humab

www.bioinf.org.uk/abs/gscore/
opig.stats.ox.ac.uk/webapps/sabdab-sabpred/sabpred/humab
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2.5.1.1 One Hot Encoding

One Hot Encoding is a binary representation of amino acid presence in a n× 20

matrix. For each residue, 20 encodings are given where the amino acid present is

coded as 1, and the other possibilities as 0.

2.5.1.2 One Hot 6

One Hot 6 is a binary representation of amino acid presence in a six bit matrix [139].

2.5.1.3 Binary 5-bit

Binary encoding method using five bit [140].

2.5.1.4 AESNN3

This is a three-dimensional protein encoding method resulting from a pre-trained

machine learning algorithm [141].

2.5.1.5 Atchley Factors

Atchley Factors are a numerical encoding for each residue of five physicochemi-

cal properties properties: Bipolar, secondary structure, molecular volume, relative

amino acid composition, and electrostatic charge [142].

2.5.1.6 Meiler Parameters

Meiler Parameters are another method of encoding residues using seven physico-

chemical properties: steric, polarisability, volume, hydrophobicity, isoelectricity,

helix probability and sheet probability [143].
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2.5.1.7 ANN4D

Dimensionality reduction from 7 physicochemical properties described by [143] to

4 composite values.

2.5.1.8 Kidera Factors

Kidera Factors are a set of 188 physicochemical properties of a protein sequence

reduced to 10 numerical features through reduction in dimensionality [144]. The

encoded information includes: Helix preference; side-chain size; extended struc-

ture preference; hydrophobicity; double bend preference; partial specific volume;

flat extended preference; occurrence in alpha region; pK-C and surrounding hy-

drophobicity.

2.5.1.9 ProtVec

Tripeptide encoding of amino acid compositions from a machine learning encoder

[145].

2.5.1.10 PAM250

PAM250 matrix compares similarities in protein sequences using comparisons of

homologous aligned sequences [146].

2.5.1.11 Hydrophobicity Matrix

This method encodes each amino acid with a hydrophobicity score as described by

[147].
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Table 2.2: Details of Residue-Level Encoding methods.

Encoding Method Encodings per residue Encoding size Description Reference
Binary 5 n x 5 1270 Residue class binary encoding [140]
One Hot 6 n x 6 1524 Residue class binary encoding [139]
One Hot n x 20 5334 Residue binary encoding [151]
AESNN3 n x 3 762 Protein mapping representations [141]
ANN4D n x 4 1016 Per residue representations of physicochemical properties [143]
Atchley Factors n x 5 1270 Per residue representations of physicochemical properties [142]
Meiler Parameters n x 7 1778 Per residue representations of physicochemical properties [143]
Kidera Factors n x 10 2540 Eigenvector values of physicochemical properties [144]
BLOSUM62 n x 20 5080 Matrix scoring residues based on observed substitutions [148]
Hydrophobicity Matrix n x 20 5080 Matrix scoring residues based on observed hydrophobic interactions [152]
Micheletti Potentials n x 20 5080 Matrix scoring residues based on potential energy interactions [150]
Miyazawa Energies n x 20 5080 Matrix scoring residues based on observed energies interactions [149]
PAM250 n x 20 5080 Matrix scoring residues based on known sequence alignments [146]
ProtVec n x 3 x 100 25000 Per tripeptide representations of physicochemical properties [145]
All Encodings n x 260 65894 All given encodings methods conjugated

2.5.1.12 BLOSUM62

BLOSUM62 matrices represent an amino acid substitution matrix, indicating the

likelihood of each residue being substituted by all other possibilities [148].

2.5.1.13 Miyazawa Energies

These numerical encodings represent the interaction energies between every residue

and every other possible residue [149].

2.5.1.14 Micehletti Potentials

Micheletti potentials are based on potential energy interactions for every residue for

every other possible residue [150].

2.5.2 Amino Acid Compositions

Amino acid compositions are feature vectors quantifying the proportion of each

amino acid relative to the sequence length for each residue, dipeptides and tripep-

tides using scores defined by Spanig et al. [153]. Sequence statistics were calcu-

lated using ProPythia [154] where VH and VL sequences were encoded separately

using a set number of Propythia descriptors given in Table 2.3.
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Table 2.3: Details of Propythia descriptors.

Number Number of descriptors Description
1 n x 20 Residue binary encoding
4 1 Net sequence charge
7 4 Sum of bond composition for each type of bond
10 1 Aromacity
11 1 Isoelectric Point
13 3 Fraction of residues which tend to be in helix, turn or shee
14 2 Molar extinction coefficient
15 1 Flexibility according to Vihinen et al. [155]
18 1 Hydrophobic ratio of sequence
20 20 Amino acid composition
21 400 Dipeptide composition
22 8000 Tripeptide composition
23 8420 All descriptors form amino acid composition
31 720 Normalised Moreau-Broto autocorrelation, Moran autocorrelation, Geary autocorrelation
33 343 Conjoint triad

2.6 Ellipse Function

The ellipse function takes in the points of the two extremes on the major axis (x1, y1)

and (x2, y2) as well as a value for h, the height of the minor axis. The major axis is

taken as the principal component where clinical mAbs have the largest distribution,

and the selected points are given as the points on the distribution closest to a given

Z score in that distribution. The value of h is given as the distance between two

points on minor axis. The method for producing the ellipse works as shown in

Algorithm 1.
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Algorithm 1: Method of Drawing Ellipse Given Coordinates of Major
and Minor Axes.

• Calculate the major (a) and minor (b) radii of the ellipse. The major radius is
calculated from the two given points (Equation 2.13) and the minor radius is
calculated as half the value given for h. where ∆x is the difference in x values
and ∆y is the difference in y values between two extreme points on the major
axis.

a =

√
∆x2 +∆y2

2
,b =

h
2

(2.13)

• Use the parametric equation of an ellipse to generate the ellipse over 100
equally spaced points between 0 and 2π assuming it is centred at the origin
(Equation 2.14).

• For a given point on the ellipse, the equation is:

x = acos(θ),y = bsin(θ) (2.14)

• Where a is the major axis radius, b is the minor axis radius and θ is a given
angle between 0 and 2π

• Calculate the angle between given points to obtain angle of rotation using
the Numpy arctan2 function for ∆y and ∆x [156].

• Calculate a rotation matrix (R) based on the angle of rotation (Equation 2.15)

R = [[cos(θ),−sin(θ)], [sin(θ),cos(θ)]] (2.15)

• Where θ is the angle of rotation

• Apply the rotation matrix to the ellipse R

• Calculate the midpoint of the two given points (Equation 2.16)

x =
x1 + x2

2
,y =

y1 + y2

2
(2.16)

• Translate the ellipse to the midpoint

• For each point, check if its x and y coordinates are inside the ellipse using
the Polygon function
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2.7 Introduction to Machine Learning

In an environment of high density data collection, it is useful to make meaningful

interpretations of said data and to use it in making predictions by fitting or training

predictive models on a given dataset. The advantage here is that not only are models

more likely to learn patterns from datasets that are too subtle or too complex for

human analysis, but that predictions can be made on unseen data that have yet to be

generated, and data may be added to the training dataset to continuously improve

future predictions [157, 158].

Generally, classification machine learning is split into supervised and unsu-

pervised methods which are dependent on the data fed into the model. Supervised

methods are usually used in cases where data is labelled (i.e. there are discrete cat-

egories to which the data points are assigned), and predictions are made to assign

categories to new data points dependent on their features. Unsupervised learning

is used mainly when there are no known categories in the data and the desired out-

come is for the model to separate the data into categories. This could be done by

looking at a feature or combination of features which differ between groups of data

points or if these cannot be identified, reducing the dimensionality of the data by

combining or eliminating features in the data.

The measurement of the difference between ideal and observed outputs is re-

ferred to as a loss functions. Different functions such as mean squared error and bi-

nary cross entropy can be applied depending on the question trying to be answered,

and whether it is classification into discrete classes, or prediction of a continuous

variable. The aim of training the model over successive iterations is to minimise
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these loss functions so that performance is improved.

Models are all fitted with a set of parameters which can also be manipulated

to improve predictions, however, there is a trade-off in how well a model may train

on a given dataset. Models may overfit to the training data if their parameters are

specifically tuned to the data, which then means they will make poor predictors on

unseen data. If this is the case, using simpler, or more general models, with default

parameters is probably a better approach. While training for good performance is

strived for, it is unlikely that machine learning models will show perfect predictive

ability. Cross-validation (CV) is a method of resampling the training dataset into a

series of different training and testing datasets to verify the model’s performance.

An example of this is ‘Jackknife’ sampling, or ‘leave one out CV’ where for every

data point, it is left out of the training dataset and predicted using on each other data

point. This approach can be useful when using small training datasets. Otherwise,

k-fold CV can be used for larger datasets.

By nature, biological data can be stochastic and difficult to interpret directly.

With this in mind, it is a useful strategy, at least at first, to evaluate a number of

models on the data and to then improve the selection seen on those which perform

best by hyperparameterisation. In the following sections, a number of supervised

and unsupervised machine learning models used in this thesis are outlined. The

majority of these models were implemented through the Scikit-learn Python module

[159]. To describe how modules were implemented, their location in the module has

been provided.
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2.8 Supervised Machine Learning

As explained above, supervised machine learning depends on labelled data from

which to correlate data features. It is possible for binary or multinomial classifica-

tion problems to be solved by supervised learning. In general, supervised models

are trained by evaluating a model’s predictive performance to categorise labelled

data. At first, the model’s guesses would be expected to be random and the loss

to be high. In iterative training rounds, the weights are adjusted to give better

performance, which should minimise the loss to an acceptable level over several

interactions.

2.8.1 Supervised Machine Learning Classifiers

2.8.1.1 Logistic Regression

A linear model that can be applied to simple classification problems by calculating

a predicted probability using a combination of features of an input data point and

assigning an input data point to a class using a threshold value typically set at 0.5.

Logistic regression was implemented through sklearn.linear_model.Log

isticRegression with default parameters.

2.8.1.2 Decision Tree

Decision Trees are a method of simple classification which are able to learn a set

of rules as to how a data point should be classified using its features. These rules

are established by finding a split point that minimises the mean squared error for

the new partitions [160]. This tree is arranged using these rules with a set of nodes

along the tree, where a dichotomous decision is made at every node. Once trained, a

sklearn.linear_model.LogisticRegression
sklearn.linear_model.LogisticRegression
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new data point starts at the root node and will move along the tree, where its path is

decided by the already learnt set of rules, to a terminal node, a ‘leaf’ node, where its

classification is assigned. Decision Trees can become overly complex and overfit to

the training data, and so a number of pruning parameters are set where nodes with

a small number of training samples are removed. A Decision Tree Classifier was

implemented through sklearn.tree.DecisionTreeClassifier with

default parameters.

2.8.1.3 Extra Trees Classifier

This method also includes decision trees, but also uses a number of additional ran-

domised trees on subsamples of the data to improve accuracy and reduce overfitting

changes. The Extra Trees Classifier was implemented through sklearn.ense

mble.ExtraTreesClassifier with default parameters.

2.8.1.4 Random Forest Classifier

Forests are collections of decision trees trained on bootstrapping samples of a train-

ing dataset with replacement and additionally, a random sampling of the features

of that dataset. The result of input data points is averaged across the collection to

overcome the overfitting problem usually encountered in decision trees through a

user-curated set of trees where the number of trees and the pruning of trees can

be tuned [160] (Figure 2.1). A Random Forest Classifier was implemented through

sklearn.ensemble.RandomForestClassifierwith default parameters.

sklearn.tree.DecisionTreeClassifier
sklearn.ensemble.ExtraTreesClassifier
sklearn.ensemble.ExtraTreesClassifier
sklearn.ensemble.RandomForestClassifier
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Figure 2.1: Schematic of Random Forest Classifier. Three decision trees, each with a max-
imum depth of two layers of nodes. A naı̈ve data point is shown taking dif-
ferent paths through the tree, depicted by red arrows and nodes highlighted in
green, and arriving at a leaf where a classification decision is made for each
tree because each tree is trained on a different sample of the training data. All
classifications are taken and a majority vote is taken giving the final classifica-
tion.

2.8.1.5 Gradient Boosting Classifier

In cases where Random Forests do not effectively learn the patterns in the data,

many weak learner decision trees with a single node, ‘stumps’, can be combined

sequentially into an ensemble that collectively makes better predictions. This is

known as boosting. It is performed by adding models sequentially to an ensemble

of predictors so that the combined loss of all models is lower than the previous

iterations of the model. Unlike Random Forests, this model uses gradient descent,

an optimisation technique to minimise the loss function. A learning rate is chosen
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as to define how much each tree should contribute to the answer. Usually a lower

learning rate requires more trees, however, this could lead to overfitting the model.

Gradient Boosting was implemented through sklearn.ensemble.Gradien

tBoostingClassifier with default parameters.

2.8.1.6 AdaBoost Classifier

Adaptive Boosting (AdaBoost) works on similar principles to the Gradient Boost

Classifier, but here, the model continues to correct previous iterations by placing

more attention to underfitted results of the previous model. AdaBoost was imple-

mented through sklearn.ensemble.GradientBoostingClassifier

with default parameters.

2.8.1.7 Stochastic Gradient Descent Classifier

The Stochastic Gradient Descent (SGD) Classifier uses sampled data to improve

gradient descent rather than using all the data. An SGD Classifier was implemented

using sklearn.linear_model.SGDClassifier with default parameters.

2.8.1.8 Ridge Classifier

A Ridge Classifier is a linear classifier model with a penalty on large coefficients.

Regularisation encourages a more stable and generalisable model. The model min-

imises an objective function that combines a loss term and regularisation, making it

effective for handling correlated features. A Ridge Classifier was implemented us-

ing sklearn.linear_model.RidgeClassifier with default parameters.

sklearn.ensemble.GradientBoostingClassifier
sklearn.ensemble.GradientBoostingClassifier
sklearn.ensemble.GradientBoostingClassifier
sklearn.linear_model.SGDClassifier
sklearn.linear_model.RidgeClassifier
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2.8.1.9 Ridge Classifier CV

This is similar to the normal Ridge Classifier, but performs leave-one-out cross-

validation. This CV training allows for a more dynamic hyperparameter tuning

for learning rate and gradient. The Ridge Classifier CV was implemented using

sklearn.linear_model.RidgeClassifierCV with default parameters.

2.8.1.10 Bagging Classifier

A Bagging Classifier also works similarly by combining weak learners where their

voted, or mean score, forms a strong ensemble through random sampling with re-

placement from the dataset, known as ‘bagging’. A Bagging Classifier was imple-

mented through sklearn.ensemble.BaggingClassifier with default

parameters.

2.8.1.11 Calibrated Classifier

A Calibrated Classifier aims to reflect the probability of an outcome in a class and

to measure the confidence of that prediction. Unlike other classifiers that output

a probability to assign classes, the probabilities are first calculated using a base

estimator, another supervised learning model which is used to train on the data,

and then calibrated according to the frequencies of each class in the dataset. A

Calibrated Classifier was implemented through sklearn.calibration.Ca

libratedClassifier with default parameters where the base estimator was a

Linear Support Vector Machine Classifier.

sklearn.linear_model.RidgeClassifierCV
sklearn.ensemble.BaggingClassifier
sklearn.calibration.CalibratedClassifier
sklearn.calibration.CalibratedClassifier
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2.8.1.12 Gaussian Naı̈ve Bayes Classifier

Gaussian Naı̈ve Bayes follows an assumption that each feature has an independent

ability to predict an output label, and seeks to combine all of these predictive powers

into the final model. It also assumes that all features follow a normal distribution

and that Bayes’ Theorem of conditional probability can be applied to each feature by

the way of a probability density function. Gaussian Naı̈ve Bayes was implemented

through sklearn.naive_bayes.GaussianNB with default parameters.

2.8.1.13 Bernoulli Naı̈ve Bayes Classifier

Bernoulli models are designed to make predictions based on binary data values and

are usually applied to text recognition problems. A Bernoulli Naı̈ve Bayes model

uses the probability of observing the set of features, given that class to assign a class

depending whether the probability calculated reaches a desired threshold. This was

implemented through sklearn.naive_bayes.BernoulliNB with default

parameters.

2.8.1.14 Support Vector Machine Classifier

Support Vector Machines work by representing a dataset in a highly dimensional

space using a kernel and work to separate the two classes of labelled data using a

hyperplane. Using the data points of class 0 and class 1 that are physically closest to

the hyperplane, the support vectors, the maximum marginal space between the two

classes [161] using a special loss function called the Hinge Loss. Although these

machines may follow linear or polynomial functions depending on what is best

suited to the data, this current function was set as a radial basis function (Figure

sklearn.naive_bayes.GaussianNB
sklearn.naive_bayes.BernoulliNB


2.8. Supervised Machine Learning 54

Figure 2.2: Schematic of Support Vector Machine Classifier. The separation of two data
classes (green circles and blue triangles) by support vector machines can be
achieved using a kernel (red line) with (A) a linear or (B) an exponential func-
tion such as a radial basis where the marginal space is maximised by the support
vectors distance to the kernel (dashed lines).

2.2). The SVM classifier was implemented through sklearn.svm.SVC with

default parameters.

2.8.1.15 Linear Support Vector Machine Classifier

LinearSVC is a similar algorithm to SVC but uses a linear kernel rather than a

polynomial one. LinearSVC was implemented through sklearn.svm.Linear

SVC with default parameters.

sklearn.svm.SVC
sklearn.svm.LinearSVC
sklearn.svm.LinearSVC
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2.8.1.16 Linear Discriminant Analysis Classifier

Discriminant analyses work to separate data points by class and calculate descrip-

tive statistics for each feature for each class. It is a more simplistic model where

a new datapoint is classified based on conditional probability, calculated by Bayes’

theorem, of it belonging to each class and selecting the class with the highest prob-

ability. It assumes features are independent of each other. Linear Discriminant

Analysis works by firstly calculating a covariance matrix, and computing the dis-

criminant score for a given observation using the covariance to classify new obser-

vations. This model was implemented through sklearn.discriminant_ana

lysis.LinearDiscriminantAnalysis with default parameters.

2.8.1.17 Quadratic Discriminant Analysis Classifier

Like Linear Discriminant Analysis, Quadratic Discriminant Analysis aims to clas-

sify samples using conditional probabilities, however, using quadratic equations

allows the use of a curved hyperplane to separate datapoints. This model was im-

plemented through sklearn.discriminant_analysis.QuadraticDis

criminantAnalysis with default parameters.

2.8.2 Linear Regression

When a calculated value is the desired outcome, rather than classification, linear

regression is a regressive model that aims to fit a line of best fit to the data which

minimises the difference, calculated as the sum of squares, between the actual val-

ues and the predicted values of the best fit. Linear regression was implemented

through sklearn.linear_model.LinearRegression. Where possi-

sklearn.discriminant_analysis.LinearDiscriminantAnalysis
sklearn.discriminant_analysis.LinearDiscriminantAnalysis
sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis
sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis
sklearn.linear_model.LinearRegression
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ble, linear regression was trained in a Jackknife fashion. Other kinds of regressions

models can be used, such as using polynomial or logistic functions, but these were

not used for these problems in favour of a more simple regression method.

2.9 Unsupervised Machine Learning

Using unsupervised learning is a good strategy to overcome the lack of labelled

data in a training dataset. Instead of relying on labels to train a model iteratively to

these outcomes, unsupervised learning relies on clustering data using similarities in

their features. This is done either through generating a pairwise matrix of correla-

tion coefficients for each datapoint against all others in the case of dimensionality

reduction or through a Euclidean distance between points in the case of K Nearest

Neighbours. This section will outline the models used throughout this thesis.

2.9.1 Principal Component Analysis

When working with high dimensional data, it is probable that many dimensions will

be irrelevant and misleading to classical supervised machine learning models. PCA

works to combine features linearly into vectors, or principal components, that aim

to explain the variance within the observed dataset by calculating the covariance be-

tween all of the features. The features are then reduced in an eigenvalue decompo-

sition where if the covariance of two particular features is positive, then the features

are combined together. The resulting principal components are sequentially ordered

where PC1 is the vector that explains the most variance in the data, followed by PC2

and so on for the top k PCs that are desired (i.e. the eigenvector with the highest

eigenvalue). This method is useful for visualising grouping in these data [162, 163]
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Figure 2.3: Schematic of Principal Component Analysis. The separation of two data
classes (green circles and blue triangles) through principle component analysis
can be achieved using a kernel (red line) with (A) a linear or (B) an exponential
function such as a radial basis.

(Figure 2.3). PCA was implemented through sklearn.decomposition.PCA.

2.9.2 Kernel PCA

This is like PCA, however, this method uses non-linear dimensionality reduction to

cluster data using either radial basis functions or sigmoid kernels. This is useful

in cases where the given data are not linearly distributed [164]. A kernel matrix

is calculated, which represents the pairwise similarity for the input data, and then a

similar eigenvalue decomposition is performed on the data to lower its dimensional-

ity. The eigenvectors are then sorted by their eigenvalues. KPCA was implemented

through sklearn.decomposition.KernelPCA.

sklearn.decomposition.PCA
sklearn.decomposition.KernelPCA
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2.9.3 t-SNE

t-Distributed Stochastic Neighbour Embeddings is a non-linear data clustering algo-

rithm that also reduces the dimensions of a dataset. It works by calculating pairwise

similarities between datapoints, and minimising the difference between the similar-

ities in the high-dimensional input and the low-dimensional output space iteratively

[165]. t-SNE was implemented through sklearn.manifold.TSNE.

2.9.4 UMAP

Uniform Manifold Approximation and Projection (UMAP) instead uses a near-

est neighbour graph based on the high-dimensional input, preserving the layout

while minimising the cross-entropy between the pairwise similarities to give a

lower-dimensional output. Unlike t-SNE, because UMAP places more emphasis

on maintaining the layout of the nearest neighbours and the pairwise similarities, it

can capture more complex grouping, so it is generally preferred for large datasets

[166, 167]. UMAP was implemented through sklearn.manifold.UMAP with

default parameters.

2.10 Methods of scoring and enhancing model per-

formance

2.10.1 Evaluation Scoring

For supervised machine learning models, evaluations of accuracy can include a raw

percentage of how many test data are categorised correctly as true positives (TP) and

true negatives (TN), but this does not take into account false positives (FP) and false

sklearn.manifold.TSNE
sklearn.manifold.UMAP
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negatives (FN), so for additional appreciation of how the model is learning, other

statistics are used, especially in cases where false positives become important.

2.10.2 Sensitivity and Specificity

Sensitivity (Sn) and specificity (Sp) of machine learning classifiers are a measure

of how many true positives are captured by the prediction (Equation 2.17), and how

many true negatives are correctly captured by the prediction (Equation 2.18). A

well-predictive model should have high sensitivity as well as high specificity.

Sn =
T P

T P+FN
(2.17)

Sp =
T N

T N +FP
(2.18)

2.10.2.1 False Omission Rate

False omission rate (FOR) quantifies how many false negative results are given by

the model (Equation 2.19), normalised for the number of total negative predictions.

A well-predictive model should have a low false omission rate.

FOR =
FN

FN +T N
(2.19)

2.10.2.2 Negative Predictive Value

Negative predictive value (NPV) also quantifies how many true negative results are

given by the model (Equation 2.20), normalised for the number of total negative
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predictions. A well-predictive model should have a high negative predictive value.

NPV =
T N

FN +T N
(2.20)

2.10.2.3 Pearson’s Correlation Coefficient

The Pearson’s correlation coefficient (r) is a measure of linear correlation between

two sets of data (given as x and y) demonstrating the ability of a regression model

to predict observed values (Equation 2.21) with a score between -1 and 1. A highly

predictive model will have a correlation coefficient close to 1.

r =
∑(xy)−∑x∑y√

[∑x2 − (∑x)2][∑y2 − (∑y)2]
(2.21)

2.10.2.4 Spearman’s Rank Correlation

Spearman’s Rank correlation (ρ) demonstrates the correlation between the order

of two datasets. This is useful for evaluating regression models where the precise

predicted value is less important that the order of the sorted values (Equation 2.22).

A highly predictive model will have a correlation coefficient close to 1.

ρ = 1− 6∑d2
i

n(n2 −1)
(2.22)

• di refers to the difference between the two ranks for each observation
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2.10.3 Mean Absolute Error

Mean absolute error (MAE) is a measure of the mean difference, whether positive or

negative, between two sets of paired data, for instance measuring error in predicted

and observed datasets (Equation 2.23).

MAE =
1
n

n

∑
i=1

|yi − ŷi| (2.23)

• yi refers to the predicted value

• ŷi refers to the true value

2.10.4 Matthew’s Correlation Coefficient

While accuracy is probably the most basic statistic that simply expresses the num-

ber of correct predictions of a test data as a score between 0 and 1, for large or

unbalanced datasets, this statistic can be misleading. Take an example of a dataset

with 90% data points belonging to one class and 10% to another class, if the model

were simply to predict all data points as instances of the majority class, it would

still have an accuracy of 0.9 [157], which is not reflective of the true performance.

Therefore, in this work, Matthew’s Correlation Coefficient (MCC) is used

to evaluate model performance [168] (Equation 2.24). This overcomes the pre-

viously mentioned problem with raw accuracy as it takes into account false pos-

itives and false negatives, so it is felt that MCC is better able to capture how

a model understands the training data, and not just how much its predictions

match what is seen in the training dataset [169]. MCC is implemented through

sklearn.metrics.matthews_corrcoef and gives a score between -1

sklearn.metrics.matthews_corrcoef
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(inverse prediction) and 1 (perfect prediction) with 0 being random chance.

MCC =
(T P × T N)− (FP × FN)√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)
(2.24)

2.10.5 k-fold CV

Well known model benchmarking methods have been applied in order to give a more

robust evaluation of their performance. k-fold cross-validation aims to train the

model on samples of the training data by splitting it into k equal splits where, in turn,

each split is held back and the model is trained on the remaining splits and tested

on the held back split. The advantage of this strategy is to gain an understanding

of how the model will perform on unseen data. If consistent performance is seen

for all cross validations, it is indicative that the model will cope with new data and

the reverse is true for inconsistent performance [170]. k-fold CV was implemented

using sklearn.model_selection.cross_val_score using MCC as the

performance metric.

2.10.6 Grid Search CV

Tuning the hyperparameters of a model is a method to increase its performance.

Grid Search CV systematically retrains a model for each combination of a set of

defined values for provided hyperparameters. The model found to be best perform-

ing on the given test dataset is kept with the tuned hyperparameters. Whilst this

model can work for the given dataset, it is not reflective of the model performance

on unseen data because this method can lead to overtraining, and so a held-back

test dataset independent of the original training data is often useful to mark true

sklearn.model_selection.cross_val_score
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performance of hyperparameter tuning. Grid Search CV was implemented using

sklearn.model_selection.GridSearchCV using MCC as the scoring

function with 5-fold cross validation.

2.11 Feature Selection

2.11.1 F-Regression

Rather than combining features as seen in unsupervised learning models, it is also

possible to increase model performance by selecting the most relevant values. F-

regression calculates the cross-correlation of each data point and the label for all

features (the raw encoding space), which is then converted to an F-score and then

to a p-value. Features are then ranked by F-score, and correlation to the target. The

top k features are then selected, where k is a number selected by the user [171].

F-regression was implemented through the module sklearn.feature_sele

ction.SelectKBest using sklearn.feature_selection.f_regr

ession as the score function and the variables for k were substituted.

2.11.2 Identifying the Position of Correlated Features

When using F-regression, it was necessary to understand which residues have fea-

tures were selected across the antibody VH or VL sequences. This can be done when

the number of features given per residue by an encoding method are consisted for

all residues and the length of the VH and VL sequences are known. To identify the

residues where a feature selected by F-regression was selected, the method is given

in Algorithm 2:

sklearn.model_selection.GridSearchCV
sklearn.feature_selection.SelectKBest
sklearn.feature_selection.SelectKBest
sklearn.feature_selection.f_regression
sklearn.feature_selection.f_regression
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Algorithm 2: Method of Identifying the Residue where a F-Regression
Feature has been Selected.

• The index of each selected feature within the whole encoding space (i) was
increased by one and divided by the number of encodings per residue (N) to
give the normalised index (I’) across the conjugated and spaced VH and VL
sequence (Equation 2.25)

I′i =
i+1

N
(2.25)

• Indices were rounded down to nearest integer to give the index of the residue
in the conjugated and spaced VHand VLsequence (Equation 2.26).

Ii = ⌊I′i⌋ (2.26)

• Indices less than or equal to 133 were assigned to the VH chain whereas
indices greater than 133 were assigned to the VL chain. To obtain the light
chain index, the index was subtracted by 132 (Equation 2.27). This gives the
position of the residue in the numbered antibody VH or VL sequence (IV H or
IV L) relating to the selected encoding (i).

i f I ≤ 133, IV H = I (2.27)
i f I > 133, IV L = I −132 (2.28)

2.12 Deep Learning

Deep Learning is a type of Machine Learning that involves much more complex

models, usually artificial neural networks (ANNs) [172]. These models consist of

layers of nodes, which can also be called nodes, taking in multiple inputs through

previous layers and outputting a new value to new layers. At each node, weights

calculated during model training are applied to the inputs (Equation 2.29), and the

output then becomes the input to the nodes of the next layer (Figure 2.4). Many of

the hyperparameters of a model can be tuned including the number and size of hid-

den layers between the input and output, activation functions at each layer, which

can tune a model between classification and regression tasks, the loss function the
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model will use to measure training performance, and the maximum number of it-

erations the models can train. These can change the architecture of the model and

therefore can become better suited to certain tasks such as more hidden layers and

different connection patterns between layers.

f (
n

∑
i=1

xiwi) (2.29)

• f is the activation function

• xi represents a single input with a total of n inputs

• wi represents a weight applied to that input

Although ANNs can be applied to predictive and regressive tasks, they also

have the ability to encode data, such as in the case of autoencoders. These are net-

works with an encoder and decoder module and work such that a dataset may be

input and encoded into a new representation with a different dimensionality and

then decoded such that the original dataset may be obtained from the encoded rep-

resentation. Autoencoders demonstrate this ability for ANNs to effectively learn

highly dense representations of input data [173] (Figure 2.5). Furthermore, these

modules may be separated in that the embeddings made by the encoder, may be

used in that of themselves to encode data for use to train other machine learning

models.
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Figure 2.4: Schematic of Artificial Neural Network. A simple artificial neural network
schematic with one input layer with 4 nodes, two input layers with 3 and 2
nodes respectively and one output layer of 1 node. Such models can be used
for either classification or regression tasks depending on the optimiser used at
the output layer.

Figure 2.5: Schematic of autoencoder. The autoencoder shown takes in four input data-
points, and through one hidden layer, encodes the input at a lower dimension-
ality, shown as two data points. The decoder also transforms the encoded data
back into the original datapoints. This encoder demonstrates a symmetrical en-
coder and decoder modules that may be used independently to encode the data
for other uses.
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2.13 Protein Language Models

Deep-learning Large Language Models (LLMs) are additional methods of encoding

text-based information in a numerical format so that this data type can be applied to

machine learning. LLMs have emerged from the field of natural language process-

ing, specifically, how computers understand human speech by recognising patterns

in text and generating sentences by predicting what should follow. These methods

are based on autoencoders where complex input data can be encoded into numer-

ical embeddings, and then using these embeddings, a response may be generated,

or the embeddings may be used as a representation of the input data to be used for

different tasks. Through encoding text into numerical formats, such as each word

being represented by a number that is correlated with it (i.e. a token), these princi-

ples can be applied. While these techniques have become useful in the fields of text

summarisation, translation, and sentiment analysis, LLMs can also be used to solve

specific problems when trained on a curated dataset. Normally, they are trained on

masses of text data from a number of sources. However, from the previous infor-

mation it can be inferred that if an LLM is trained using protein sequences, it will

become proficient at representing protein sequences, and this can also be restricted

to particular classes of proteins, such as antibodies [174, 175, 176].

2.13.1 Training Antibody Large Language Models

The process for protein LLM training is much the same where amino acids are

treated as words in a sentence. Before training a LLM using sequences using the

VH and VL sequences, these sequences need to be numbered or padded with a given
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padding character depending on the LLM, to make all input VH and VL sequences the

same length as each other. This is because the shape of the output data is dependent

on the shape of the input data and with antibody sequences being different lengths,

it would be difficult to train a dataframe where datapoints had different numbers of

features. The sequences of amino acids are tokenised, where a substitute digit can

be used to replace the residue letter, to enter the data into the model.

Once the training data has been tokenised, a selection of architectures can be

selected. The most reliable architecture chosen has been based on transformer ar-

chitecture, which are modules able to apply attention that captures relationships

between positions in the training data if it is seen consistently. This attention can be

expressed as the relationship between a Query, Key and Value embeddings, repre-

senting the token, the context and the value of the tokens attended to. The similarity

between query each query embedding and all key embeddings as a dot product, pro-

ducing a matrix of scores informing how much attention the query token should pay

attention to a particular key token.

In a given LLM, AntiBERTy [177], a self-attention mechanism is given, mean-

ing that Query, Key and Value come from the same input sequence and relation-

ships are captured from across the sequence. There is great importance in attention

when training an antibody LLMs as the majority of antibody sequences share sim-

ilar frameworks, and the main regions of diversity are seen at the CDRs and so the

most attention is designated to these regions. The number of features that the model

generates per token is also dictated by attention mechanisms and the architecture

of the model (i.e. the number of nodes that output the encoded data), by splitting
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attention into heads, which encode different information based on the Query, Key

and Value embeddings. In the case of AntiBERTy where the size of the embeddings

is 512, there are 8 heads, each head works to calculate 64 embeddings per token and

the outputs are combined to give the full embedding space [177].

Language models are trained through a process called ‘masking’ in which a

small number of tokens in input data are masked so that the model is made to predict

what should be in its place. As the model retrains and its predictions are closer

to the masked value (i.e. the loss function decreases over successive rounds of

training), it is thought that the model gains a better understanding of how the words

and sentences are structured to predict text. Furthermore, transformers are modules

that may apply an enhanced focus on some aspects of the input data and diminish

other aspects through dynamically generating a proportionate number of features to

represent them depending on how important those features are in distinguishing data

points. Because of the mass and complexity of the data these models are trained on,

they may have millions or billions of parameters and require high compute power

to implement, however, when LLMs are applied to specialists tasks like antibody or

protein sequences, the demands for compute are not as high as for general purpose

language models.

2.13.2 AntiBERTy

AntiBERTy [177] is based on the ‘bidirectional encoder representation from trans-

formers’ (BERT) architecture which relies on each output feature representing each

input feature and so learns representations of bidirectional data not just sequen-
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tial, which means it can learn more meaningful representations of the input data

through contextual information [178, 172]. It is trained on a dataset of 558 million

non-redundant antibody sequences from the OAS representing: human, rat, mouse,

camel, rabbit and rhesus monkey. A multiple instance framework was also used

to identify antigen-binding residues and enhance attention onto the CDR loops of

the antibody to increase the context-derived information available for the model to

train on. For this reason, AntiBERTy is useful for antibody modelling and predict-

ing binding. Implementation of AntiBERTy used for this project was ‘model 1’ that

was included in the code of the Igfold software [179] to represent antibodies for

structural prediction.

2.13.3 AbLang

AbLang is another LLM trained on 14,126,724 VH sequences and 187,068 VL se-

quences that were also taken from OAS [33]. By masking 70% of sequences during

its training, it has been well trained to predict missing residues in antibody se-

quences resulting from sequencing errors. This has clear applications in database

curating and antibody design. AbLang was used with the ablang Python package.

2.13.4 Sapiens

Another LLM is Sapiens, which is trained on 562,544,071 VH and 55,826,963 VL se-

quences also taken from the OAS, but with the use case of humanise antibodies, fill

missing residues, and create feature embeddings [180]. This model can be accessed

using the sapiens Python package.

ablang
sapiens
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2.13.5 ESM

ESM-2 is a transformer-based general protein language model with adjustable num-

bers of parameters ranging from 8 million to 15 billion depending on the complex-

ity of the task at hand. The training data was an unspecified number of sequences

from the UniRef database by predicting masked amino acids to learn sequence and

structural data representations for protein modelling [176]. The iteration of the

model used here included 8 million parameters, as found in the ESM tokeniser

facebook/esm2_t6_8M_UR50D as this lightweight version of the model was

faster to run on a CPU machine. This model can be accessed using the esm Python

package.

2.13.6 Use of LLMs in this Thesis

To enter antibody sequences into the LLMs, throughout this thesis, sequences were

made to a standardised format. This was done by numbering sequences using the

Chothia numbering scheme, conjugating the VH and VL chain and padding missing

residues with a padding character allowed by the LLM on an individual basis.

The LLMs used here included: AntiBERTy [179], AbLang [33] and Sapiens

[180], which are all antibody-specific models, and ESM [176], which is a general

protein language model. For each language model, VH and VL sequences were in-

dividually spaced according to the Chothia numbering scheme, where the padding

character differed for each model according to its specifications. The encoding size

observed for each language model using the dataset, and padding characters are

given in Table 2.4.

facebook/esm2_t6_8M_UR50D
esm
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Table 2.4: Details of language model encodings.

Language Model Features (VH +VL ) Padding Character Reference
AntiBERTy 130,048 “ ” [179]
AbLang 195,072 “*” [33]
Sapiens 152,560 “*” [180]
ESM (esm2 t6 8M UR50D) 82,560 “X” [176]



Chapter 3

Separating Clinical and Repertoire

Antibodies to Identify Repertoire

Antibodies with Clinical Potential

3.1 Introduction

In order to generate triaging criteria for separating clinical mAbs and human anti-

bodies, several approaches were taken that are outlined in this chapter. This was

partly inspired by the work in Negron et al. [111] that worked to solve the same

problem using sequence statistics to train linear models to predict a score based on

similarity to clinical stage mAbs.

This chapter concerns identifying clinical candidates from repertoire data

through comparing antibodies from available human repertoire data with a dataset

of human clinical mAbs. The first approach taken here included physicochemcial

property-based filtering, however, better success was seen with machine learning.
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This involved encoding these sequences with antibody language models and using

machine learning models to classify groups in the data. Firstly, supervised ma-

chine learning using a voting function was used, but because the repertoire data is

unlabelled, an unsupervised approach was seen as more appropriate. When this un-

supervised approach was implemented, a number of methods were tested to extract

antibodies which clustered closely with the clinical mAbs.

3.2 Datasets and Models

3.2.1 Human Repertoire Data

All human paired VH and VL sequences were downloaded from Observed Antibody

Space [33] (accessed January 2022, Appendix A.1) and assimilated into one file

consisting of 88,274 paired human sequences. Randomly selected paired sequences

(n = 10,000) were collected into one file (Data File 1).

3.2.2 Human Clinical-Stage mAbs

TheraSabDab was accessed in October 2021 and filtered by Format ‘Whole mAb’.

Human antibodies were identified using the ‘-umab’ suffix, and checked for source

with a literature search. The remaining antibodies were then sorted using the ‘High-

est Clin Trial (Oct ’21)’ field for “Approved” (n = 31) (Data File 2); “Discontin-

ued” (n = 77) (Data File 3) or in any phase of clinical trials (‘Phase I’, ‘Phase-II’,

‘Phase-III’) where Est. Status was ‘Active’ at the time of access (n = 35)(Data File

4), giving a total of 143 clinical stage antibodies. A further held back dataset of

human-derived clinical mAbs was acquired (n=203), using the 2022 naming con-
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Table 3.1: Means and standard deviation of sequence-calculated physicochemical proper-
ties for fully human mAb therapeutics (n=144) and library human antibodies
(n=10,000).

Feature Human Therapeutic mAbs OAS Library Antibodies p value
CDR-H3 Loop Length 12.08±6.65 15.01±10.54 0.00049
∆G VH kJ mol−1 7614±3260 6583±3441 0.00014
∆G VL kJ mol−1 1086±2381 796±2614 0.14
∆G Concatenated VHVL kJ mol−1 9248±3896 7944±4238 0.00015
Mean pI of VHVL 7.87±1.30 7.8±1.24 0.025

vention using ‘-tug’ for unmodified whole immunoglobulins and ‘-bart’ for whole

immunoglobulins with engineered amino acid changes [181]. This was supplied by

Andrew Martin in June 2024 (Data File 5).

3.2.3 Evaluation of Datasets Physicochemical Properties

It was thought that clinical antibodies with properties that separate them from li-

brary antibodies could be identified using physicochemical properties linked to de-

velopability characteristics as had been used in the TAP score [110] and TA-DA

score [111]. However, it was found that the TAP score was not be suitable for high-

throughput sequence analysis because of the need to model antibodies, which was

time consuming on its online portal. For this reason, metrics that do not require

modelling and could be calculated from sequence (∆G, pI and CDR-H3 length)

were selected.

3.3 Physicochemical Property Triaging

To establish a triaging pipeline from physicochemical properties, physiocochemi-

cal properties were evaluated and compared between the clinical and library datasets

(Table 3.1). The maximum and minimum values of continuous variables were used

to identify antibodies with developability characteristics which fall within the ob-
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Table 3.2: Triaging effect of Z score filtering on all physicochemical properties using dif-
ferent values of Z.

Z Score
None 2 1 0.5

Number of Antibodies 9653 7038 2600 351

served range of the market approved mAbs. Properties including CDR-H3 length,

pI and ∆G were selected because methods were found to calculate them quickly us-

ing only sequences. Additionally, whilst they may not be very informative in terms

of developability, these continuous variables could be used to make triaging-cutoffs

using Z scores to apply to large databases and remove antibody sequences which

show high divergence from the mean. This would allow a user to select a Z score

based on how stringently they would like to triage the antibody library. It would be

expected that using smaller Z scores would result in more antibodies being triaged

out of the library as the range for acceptable features would become more narrow

with respect to the mean seen in clinical mAbs.

It was observed that, decreasing the Z score had a dramatic triaging effect for

all properties (Figure 3.1), and ∆G of unfolding had the largest filtering effect at

the lowest Z score tested. When filtering using all properties, more antibodies were

triaged out at each selected Z score than any of the individual filters (Table 3.2).

This was a drastic filtering effect that, at the lowest Z score tested, removed over

95% of the entered antibodies. This result would be expected to give a subset of

OAS antibodies with physicochemical properties similar to most clinical mAbs.

However, it was decided to also use the machine learning models to evaluate this

dataset and select candidates.
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Figure 3.1: Triaging OAS antibodies using physicochemical properties. Violin plots of
results of filtering OAS library antibodies based on based on Z score cutoffs for
a) ∆G of unfolding (VH+VL), b) isolectric point and c) CDR-H3 Length.

3.4 Supervised Learning

3.4.1 Training models

As was introduced in the methods chapter, supervised machine learning may give

a better solution approach to this problem, and the use of sequence encoding tech-

niques may provide more insight into the mechanisms that determine these devel-

opability factors, more so than superficial physicochemical properties. This prob-

lem similarly has two groups which can be labelled library (class 0) and clinical

(class 1) and so if a classifier could be trained which has a high performance of

identifying clinical antibodies (i.e. high sensitivity), false positive examples (i.e.

repertoire antibodies which the model thinks is a clinical antibody) are likely to

have properties similar to clinical antibodies.

All of the human clinical dataset (class 1) and human repertoire data (class 0)
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from the OAS were encoded with the AntiBERTy language model. A selection of

15 supervised machine learning models (see Section 2.8.1) were trained on this data

using different numbers of antibodies randomly sampled from the library dataset

(n=100, n=500, n=1000, n=10,000) to investigate whether this weighting balance

of positive to negative examples made a difference to how the models learned. This

was combined with F-regression to investigate if the number of features (k) used for

the models to learn from had an effect. Different values for k were selected [1, 10,

50, 100, 500, 1000, 2500, 5000, 10000].
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Figure 3.2: Classifiers trained on OAS repertoire antibodies and Clinical stage mAbs.
MCC scores and standard deviation of 16 binary machine learning predictors
classifying test split of repertoire antibodies a) (n = 100), b) (n = 500), c) (n =
1000) against clinical antibodies (n = 143) dataset encoded with the AntiBERTy
language models. F-regression scores are colour coded.
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Classifiers were trained on all splits of the data. It seems from inspection that

performance for each split was similar across Support Vector Machine Classifier

(SVC) models, Ridge classifiers, Logistic Regression and Calibrated Classifiers,

and that there was an increase in performance was seen when more features were

used in training, however, this increase in performance plateaued after k=1000.

The best overall performance was seen when training the clinical dataset

against 100 library antibodies (Figure 3.2a), which was an aproximately balaced

dataset,with k set to 10,000 features, and trained with the LinearSVC model was

used (MCC=0.77±0.14). Performance decreased when training data increased to

500 library antibodies, but the best performance at this split was also observed us-

ing the same classifiers as before: the Ridge Classifier (MCC=0.65±0.12) where

k=10,000 (Figure 3.2b). A similar decrease in performance was seen with 1000

library antibodies, where the best for the Calibrated Classifier (MCC=0.62±0.12)

where k=10,000 (Figure 3.2c). It could be drawn from this experiment that by giv-

ing the library and clinical antibodies an equal weighting, the models are able to

learn more to distinguish them, however, when using fewer library examples, it is

more difficult to capture the possible diversity of the library leading to less gen-

eralisable models. So a method of manual cross-validation (CV) was devised that

would allow for this balanced weighting and to allow the model to be trained on a

greater diversity of the repertoire.
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3.4.2 Manual CV Training

While it was seen that more balanced datasets of clinical and library antibodies to

train classifiers was found to give the most reliable predictions, as previously men-

tioned, this may exclude a lot of the diversity seen in the repertoire, and it risks

labelling potentially useful antibodies as class 0. In reality, the repertoire data are

not labelled. It is uncertain whether a given library antibody would have the clinical

features appropriate for a clinical antibody, and so labelling all of these library anti-

bodies the same class would be misleading to the model. For this reason, a method

of manually sampling the data was devised in order to train multiple models on the

diversity of the repertoires and to use a method to take a vote of predictions from a

collection of models as a method of not losing potentially useful antibodies.

It was decided to use sets of 500 library antibodies with a clinical data split

as using a selection of features from the F-regression (k=2500) as training data

collection of models from which a vote would be taken. This choice was made for a

number of reasons. Firstly, performance was thought to be more consistent in these

splits due to the reduced standard deviation of MCC scores between splits of the data

than seen in the 100 library antibody split. Secondly, using the 100 library antibody

method would also make 99 different models, per split to train on all antibodies

from the OAS library, totalling 990 models, which seems to be unnecessarily large

for this purpose. Thirdly, 500 library antibodies give the opportunity to introduce

more diversity to the training dataset for individual models.

The 10,000 repertoire antibodies were randomly split into 20 splits of circa

500 library antibodies and joined with a given split of clinical data to give a total set
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Figure 3.3: Schematic representation of the generation of weighted voted predictor. This
shows how training clinical data has been concatenated to different splits of
repertoire data to train individual classifiers and a held back split of both clinical
and repertoire antibodies to test the overall performance of the model. This
example is given imagining 4 splits of the human data and two splits of the
clinical data.

of training data of 19 different training sets of 500 different library antibodies and

130 of the same clinical antibodies, and a test set of 500 library antibodies and 13

clinical antibodies. This would give 20 sets of predictions, each as a result of a vote

taken from 19 models.

3.4.3 Voting Function

To then take a final vote for all predictions per antibody, two voting functions

were tested to collect the final prediction of each antibody. This process has been

schematically outlined in Figure 3.3. Because of this method, the antibodies to be

taken forward would be seen as false positives to the model, so in addition to MCC

other statistics have been used to evaluate the performance. False omission rate

(FOR) to evaluate how often the models do not learn the positive examples, which

would be expected to be low. Negative predictive value (NPV), to evaluate how well
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the model can predict negative values, which would be expected proportional to the

fraction of repertoire to clinical antibodies. Details of these statistics are given in

Section 2.10.1.

3.4.3.1 Function one

The first voting method tried was to take the sum of positive and negative predicted

probabilities and take the vote of whichever sum was higher (Equation 3.1).

Sout =


(∑N+ s+o )

N+ , i f (V = C+)

(∑N− s−o )

N− , i f (V = C−)

(3.1)

• s+o is the confidence output of a predictor predicting C+

• s−o is the confidence output of a predictor predicting C−

• N+ is the number of predictors predicting C+

• N− is the number of predictors predicting C−

This gave 20 sets of predictions, which have been evaluated in Table 3.3. Some

individual predictions using this method look impressive, especially predictions 1,

5, 12 and 20 where it seems there is a low FOR with high NPV as expected. Im-

portantly, in each of these cases, more true positives are present than true negatives,

indicating a trustworthy set of models that have learnt patterns that separate the

clinical and library antibody.
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Table 3.3: 20 sets of predictions made from voting classifier using Method 1.

Prediction MCC NPV Sn TP FP TN FN
1 0.421 0.996 0.714 5 14 452 2
2 0.298 0.993 0.571 4 19 447 3
3 0.352 0.996 0.667 4 16 451 2
4 0.242 0.991 0.429 3 16 450 4
5 0.379 0.996 0.714 5 18 448 2
6 0.212 0.993 0.500 3 25 442 3
7 0.314 0.993 0.571 4 17 449 3
8 0.332 0.993 0.571 4 15 451 3
9 0.399 0.996 0.714 5 16 450 2
10 0.064 0.987 0.143 1 18 448 6
11 0.471 0.998 0.833 5 13 454 1
12 0.409 0.996 0.714 5 15 451 2
13 0.353 0.993 0.571 4 13 453 3
14 0.083 0.989 0.167 1 15 452 5
15 0.377 0.993 0.571 4 11 455 3
16 0.278 0.991 0.429 3 12 454 4
17 0.178 0.989 0.286 2 13 453 5
18 0.342 0.993 0.571 4 14 452 3
19 0.265 0.993 0.500 3 16 451 3
20 0.362 0.996 0.714 5 20 446 2

Mean±SD 0.307±0.108 0.993±0.003 0.548±0.185 3.700±1.261 15.800±3.189 450.450±3.120 3.050±1.234

3.4.3.2 Function two

The second function takes the difference in the sums of positive and negative pre-

dicted probabilities corrected by the number of predictions (Equation 3.2).

Sout =

∣∣∣∣∣(∑N+

n (s+o,n − s−o,n))− (∑N−
n (s−o,n − s+o,n))

N++N−

∣∣∣∣∣ (3.2)

• s+o is the confidence output of a predictor predicting C+

• s−o is the confidence output of a predictor predicting C−

• N+ is the number of predictors predicting C+

• N− is the number of predictors predicting C−

• Sout is the final voted confidence output.

This method of voting produces different results than the previous method de-
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Table 3.4: 20 sets of predictions made from voting classifier using Method 2.

Prediction MCC NPV Sn TP FP TN FN
1 0.431 0.989 0.286 2 1 465 5
2 0.562 0.991 0.429 3 1 465 4
3 0.662 0.996 0.667 4 2 465 2
4 0.376 0.987 0.143 1 0 466 6
5 0.501 0.991 0.429 3 2 464 4
6 0.284 0.989 0.167 1 1 466 5
7 0.420 0.991 0.429 3 4 462 4
8 0.330 0.989 0.286 2 3 463 5
9 0.501 0.991 0.429 3 2 464 4
10 -0.010 0.985 0.000 0 3 463 7
11 0.406 0.989 0.167 1 0 467 5
12 0.562 0.991 0.429 3 1 465 4
13 0.371 0.989 0.286 2 2 464 5
14 0.000 0.987 0.000 0 0 467 6
15 0.672 0.994 0.571 4 1 465 3
16 0.180 0.987 0.143 1 3 463 6
17 0.431 0.989 0.286 2 1 465 5
18 0.501 0.991 0.429 3 2 464 4
19 -0.007 0.987 0.000 0 2 465 6
20 0.330 0.989 0.286 2 3 463 5

Mean±SD 0.375±0.203 0.990±0.002 0.293±0.187 2.000±1.257 1.700±1.129 464.550±1.356 4.750±1.164

spite using the same predictions as given above. In this case, the best looking sets of

models are from prediction 3 (Table 3.4). No other set of models would be consid-

ered suitable for use as the sensitivity is lower, meaning that true positive examples

have not been captured, and so the selected false positive results (repertoire anti-

bodies expected to have clinical properties) become less trustworthy. Overall, this

weighted method of voting would be seen as more conservative method than using

the result of the summed probabilities.

3.5 Unsupervised Learning

To examine the groups of unlabelled data, unsupervised learning is the most suitable

solution to allow natural clustering of data. This general approach has a number

of advantages including that all antibodies in the sample can be included into a

single model, and that these methods can be plotted in 2-dimensional space so that

antibodies which are similar to each other would be positioned closer together than
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antibodies that had different properties. Using this principle, it was hypothesised

that if the clinical and repertoire antibodies underwent dimensionality reduction

together, a cluster of clinical antibodies which would be assumed to have similar,

developable properties would be identified together in one area and that antibodies

with similar properties would cluster closely with the clinical mAbs. These would

be the antibodies that would be selected to be taken as clinical candidates.
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Figure 3.4: Scatter plots of unsupervised machine learning models trained on clinical
(n=144) and library (n=10,000) paired antibody sequences encoded with the
AntiBERTy language model. Plots are colour coded by clinical stage (a) or VH
chain V region germline gene and VL chain type (b).
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3.5.1 Principal Component Analysis

Linear principal component analysis was performed on the encoded data and the

first two principal components were plotted. In total, 6 discrete groups were formed

with three at one extreme of the principal component (PC) 1 (Figure 3.4a). Upon

investigation, it was found that these clusters corresponded to different VL chain

types and heavy chain VH germline families related to PC1 and PC2 respectively.

Clinical antibodies were observed inside all these groups except for the IGHV4

with λ VL chain, and were particularly over-represented in the groups of IGHV3

with κ VL chain groupings. However, these groupings of clinical antibodies did

not form tight clusters within their germline clusters as hypothesised, and so it was

difficult to use these as a basis to identify clinical properties in library antibodies.

3.5.2 Kernel Principal Component Analysis

Non-linear or Kernel PCA (KPCA) using the radial basis function kernel showed

the hypothesised outcome of clustered clinical antibodies amongst repertoire anti-

bodies. Using increasing kernel coefficients (γ=[10, 100, 500, 1000]), the cluster

of clinical antibodies persisted and this cluster always appeared at the origin of the

dimensionality reduction plot. Furthermore, it appeared that increasing the values

of γ caused the elimination in the importance of one of the principal components,

which was most apparent when set at γ=1000 (Figure 3.5). Therefore, the plot at

γ=500 was selected as the best way to demonstrate the clustering effect that was

hypothesised. From inspection, it seems that the approved clinical antibodies have

a tighter grouping effect than what is seen in the in trials and discontinued subgroup
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along both axes, but no real effect was found (Table 3.5). Furthermore, when the

plot was colour coded according to VH germline family and VL chain type pairing,

no obvious clustering effect was found. This supports the idea that this method

of dimensionality reduction is learning other characteristics than germlines (Fig-

ure 3.4b).

Figure 3.5: Scatter plots of kernel principal component analysis models trained on clinical
(n=144) and library (n=10,000) paired antibody sequences encoded with the
AntiBERTy language model. Plots are given for increasing kernel coefficients
for a) γ=10, b) γ=100, c) γ=500 d) γ=1000. Antibodies are colour coded by
clinical stage.
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Table 3.5: Median values and standard deviation of PC1 and PC2 given for different groups
of encoded antibody sequences of the KPCA (γ=500).

PC1 PC2
OAS -0.0007±0.01 0.0004±0.01
Approved 0.002±0.001 -0.0005±0.001
Trials 0.001±0.001 -0.0005±0.0008
Discontinued 0.001±0.001 -0.0002±0.001

3.5.3 t-SNE

More complex methods of dimensionality reduction include t-SNE, which has pre-

viously been shown to group the langauge model encodings in 2-dimensional space

[33]. t-SNE was performed with perplexity set at 30, as this was the default value set

in the Python module. This method of clustering formed much more discrete group-

ings, which these were highly linked to germline gene pairing but more granular

than the linear PCA. Clinical mAbs were dispersed throughout the groupings, such

that only one or two clinical antibodies would be in some clusters. Consequently

so, it would be difficult to use this dimesionality reduction method is not suitable

to identify groupings of clinical antibodies (Figure 3.4). It appears in this scenario

that there are clusters of antibodies which have the same heavy chain VH domain

germline and light chain type (κ or λ ), however, it would appear that IGVH3 paired

with κ and IGHV3 paired with λ are widely spread amongst clusters representing

more diversity within this germline pairing. Potentially, subgroups between com-

mon germline gene pairings would show this pairing effect at the VL germline level.

It was seen that increasing the perplexity could cause these clusters to converge in

a similar manner to that seen in the linear PCA.
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3.5.4 UMAP

UMAP is a popular method for dimensionality reduction that has previously been

applied in demonstrating how antibody language models can separate repertoires of

antibodies into groups [177]. The results presented here was set with the nearest

neighbours set to 3, as this was the default value set by the program. As can be

seen here, clusters have formed where clinical antibodies are dispersed among the

clusters, rather than clustering together, as seen in the Kernel PCA. It can also be

seen in Figure 3.4, as with previous methods of unsupervised learning, that these

groups can be explained by VH/VL germline gene family pairing, however, there is

overlap of λ (blue) and κ (green) pairing with IGHV3 and with IGHV4 and λ (red)

and IGHV4 with κ (yellow) (Figure 3.4). So, this would demonstrate that there

are similar patterns of clustering seen here as in t-SNE or linear PCA where VH

and VL pairing account greatly for the observed clustering. Due to the dispersal

of clinical antibodies through the clusters in these three dimensionality reduction

and clustering methods, it was still considered unsuitable for pipeline purposes.

Interestingly, it seems that VL germline has less influence on clustering in UMPA

than seen in other methods.

3.5.5 Selecting an Unsupervised Model

The Kernal PCA (KPCA) was selected as the most appropriate unsupervised ma-

chine learning model to separate clinical and library antibodies. To confirm its

suitability, a test dataset made up of clinical mAbs which were named since 2022

using the new naming convention and therefore not included in the original train-
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Figure 3.6: Scatter plots of Kernel PCA trained on clinical (n=144), library (n=10,000) and
test clinical (n=203) paired antibody sequences encoded with the AntiBERTy
language model.

ing data, was entered into the KPCA together with the OAS repertoire data and

the original clinical dataset to examine if these antibodies were positioned closely

to the original clinical dataset. It was seen that this was the case (Figure 3.6) and

thus strengthened the argument that antibodies with suitable clinical features can

be identified by positioning in the KPCA plot. The next consideration was how to

identify antibodies positioned closely to the clinical dataset.

3.5.6 Selecting Clinical Candidates from KPCA

In order to use the result of unsupervised learning as a method of triaging naı̈ve

library antibodies, a method needed to be devised to identify candidates that closely

align with clinical antibodies. Several approaches have been taken to do this.
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3.5.6.1 Z Scores

The simplest imagined method was to look at the extremes of the clinical antibodies

at each PC and use these as triaging criteria for antibodies outside these observed

ranges. As shown with physiochemical filtering, Z scores may be used to give

added stringency to the triaging process, so with lower Z scores used, antibodies

closer to the origin are selected. The issue with this triaging method is that because

of the radial shape of the KPCA, by using linear cutoffs, this effectively draws a box

around the clinical antibodies and the similar library antibodies, which introduces

unwanted library antibodies to the selection at the vertices of the box. For this

reason, if using this triaging method, it would be better to use very low Z scores so

the selection is entirely within the clinical antibodies, however this may introduce

additional biases to the selection and would reject potentially useful antibodies.

3.5.6.2 Ellipse Function

A method for excluding unwanted antibodies at the extremes of a box method would

be to use a circular function that captures only the desired library antibodies. Using

similar principles in which antibodies on the extremes of the clinical cluster could

be used as the major and minor axes of an ellipse, it can be drawn (see Section 2.6).

Those antibodies which fall inside the drawn ellipse may be taken forward. Using

the Z score cutoff method, the distance between the extremes on the major and

minor axes can be altered and fewer antibodies are captured, and would be expected

to be of higher quality as they cluster closer to the majority of clinical antibodies.
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3.5.6.3 Pairwise Distances

Using the idea of capturing antibodies that are closer to the main group of clinical

mAbs, pairwise distances between clinical mAbs can be used to identify antibod-

ies which are as close to a clinical mAbs as they are to each other. By examining

the largest distance between antibodies using the Euclidean distance formula (Equa-

tion 3.3), this distance can be applied to all of the library antibodies against all of the

clinical antibodies, and those with a distance from a clinical antibody shorter than

the maximum distance observed between clinical antibodies may be taken through.

Stringency can be added to this model by shortening the maximum distance allowed

or by requiring more than one antibody to be within the maximum distance.

d =

√
(x1 − x2)

2 +(y1 − y2)
2 (3.3)

3.5.6.4 Selecting an Approach

From the number of antibodies remaining in Table 3.6, it can be seen that the use

of the ellipse function had the greatest effect of triaging out antibodies with each

Z score cutoff compared with the other methods. It seemed surprising that the Z

score box and pairwise distances method had low stringency, and even at the low-

est selected Z score, 4627 and 6705 antibodies remained respectively, which would

suggest minute scores would be needed to triage a manageable amount for the next

stage of the pipeline. This is complimented by a much more conservative approach

taken with the ellipse function, which only had 351 remaining library antibodies
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Table 3.6: Counts of antibodies remaining from OAS library using different methods of
selecting candidate antibodies from Kernal PCA result.

Z score
Method 2 1 0.5 0.1
Z score 7437 6371 5625 4627
Ellipse 4391 1521 813 351
Distances 8242 7792 7377 6705

with the lowest Z score threshold. This would make it the most appropriate ap-

proach to take forward candidates that cluster closely with clinical antibodies.

3.6 Discussion

The work carried out in this chapter describes approaches to identify library or

repertoire antibodies that have properties similar to human clinical mAbs, which

are assumed to have these developability properties. So, if entering a library of

antibodies, the number of antibodies retained by the model would be unmanageable,

so this additional approach was necessary to improve the result outputted by the

pipeline.

It was seen that triaging on physicochemical properties could reduce the count

of input antibodies to a manageable number. However, the properties used were

considered to be superficial and did not give much insight as to how similar these

antibodies are to clinical mAbs, even when the composite filter had a dramatic effect

of triaging out input antibodies. Potentially, this is reflective of how few antibodies

occupy the space where all of these conditions are satisfied. This approach was con-

sidered unrealistic for triaging antibodies because this would only retain antibodies

as ones which sit very close to the mean of these properties seen in the clinical

mAbs and not give opportunity to explore more diverse options. Previously, the
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‘developability web’ analogy was mentioned, where one property may affect oth-

ers; for this reason, it is probably unrealistic to expect many antibodies to occupy

this narrow space, and so it would be more prudent to use this physicochemical fil-

tering to triage out negative examples which sit outside the observed ranges, than

to use this for selection. These physicochemical properties can therefore be used

with low stringency to remove antibodies clearly unlikely to have suitable proper-

ties before using the machine learning approach, thus saving unecessary compute

time.

Supervised learning appeared to generate voting models that were confident

in identifying positive examples and triaging out negative examples. This was cer-

tainly true of the first method in cases where in most cases more true positives were

found than true negatives, and so the false omission rate remained fairly low and

consistent. For each test split of the data of around 500 antibodies, between 13-

25 false positives were selected, which would be the library antibodies selected as

clinical antibodies. This would mean that for a library of 10,000 around 260-500

antibodies could be selected. The second voting method overall scored worse, as

Sn was much lower first voting method, potentially excluding useful antibodies if

the models are not capable of learning the difference between clinical and library

antibodies. This approach offers a clear cut method of identifying which antibodies

to be taken forward, as the model outputs them.

Although the exercise in training supervised learning models was useful to

demonstrate proof of concept, because these data are unlabelled in reality, meth-

ods of dimensionality reduction and unsupervised learning were used to cluster the
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repertoire and clinical antibodies. It was hypothesised that candidates would cluster

physically close to the clinical antibodies. The KPCA approach showed this rela-

tionship well and did not appear to be affected by biases in the germlines, which

was the case for the other methods. However, some drawbacks to this approach

would include that this method is best when taken with a large sample that is rep-

resentative of the diversity of the repertoire, so future runs of the KPCA may have

to include this OAS data as well as the library data to ensure that this diversity is

taken into account by the model. Otherwise, if only a small number of antibodies

are entered, they may all cluster close enough to the clinical antibodies that all may

progress, which is not an informative outcome.

Because the clustering is more dense around the origin, a stringent triaging

using Z scores was devised with the elliptical function, where more stringent Z

scores led to fewer antibodies being selected through drawing a smaller ellipsis.

It was interesting that antibodies from the clinical dataset grouped around the

origin of the radial basis function KPCA. This could indicate some notions about

the properties of the clinical antibodies. Firstly, it supports the assumption of devel-

opability by demonstrating a shared property or set of properties that are also shared

by some library antibodies, and the fact that these antibodies are typical examples

of an antibody with no extremes shown. Secondly, biases in the germline will lead

to antibodies of certain VH and VL germline family pairings being selected as clini-

cal candidates from this pipeline. If these are proven to work, it does not appear to

be a disadvantage, since the pipeline would be designed for libraries or repertoires

of fully human antibodies. The ellipse function provided a robust solution for to
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selecting out the antibodies which we want to take forward.

3.7 Conclusions

In conclusion, this chapter has shown that a sample of human repertoire or library

antibodies can be triaged to select those with properties similar to clinical mAbs,

assumed to fulfil the developability criteria needed to enter clinical trials. To con-

tinue this work, it seems necessary to investigate these physicochemical properties

further and improve methods of prediction.



Chapter 4

Using LLMs to Predict Antibody

Developability Features

4.1 Introduction

As shown throughout the thesis, the importance of producing antibodies with ap-

propriate developability properties has become paramount in the pursuit of safe and

viable therapeutics. These properties relate to the stability, hydrophobicity, charge

and immunogenicity of the molecule. Although there are experimental methods to

measure these metrics for proteins and antibodies, they are costly and time consum-

ing, meaning they are not compatible with the high-throughput pipelines employed

in antibody discovery campaigns until a manageably small number of leads are

identified. Due to the high attrition rate of these pipelines, the focus has recently

been on developability where in silico predictions of these metrics can be performed

to avoid expensive late-stage failures [182, 103, 101].

This chapter is dedicated to using existing datasets to predict these properties.
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It is split into two sections, the first relating to physicochemical properties includ-

ing: thermostability, hydrophobicity; cross-reactivity and solubility using data from

Jain et al. [102]. The second relates to immunogenicity prediction from Anti-drug

antibody data from Marks et al. [104]. These were done using linear models, and

machine learning approaches trained on experimental data trained using encodings

from antibody LLMs. The use of these models would be important additions to the

triage pipeline so that each antibody could receive additional predictions related to

its properties, using the same encodings used by the pipeline thus far.

4.2 Predicting Physicochemical Properties of anti-

bodies

4.2.1 Introduction

A landmark paper by Jain et al. [102] published experimental values measuring

thermostability, hydrophobicity, self association and polyreactivity for 137 clin-

ical stage antibodies. Measurements for thermostability included Melting tem-

perature (Melting temperature); Accelerated Stability (AS) and Stand-up Mono-

layer Adsorption Chromatography (SMAC). Measurements for hydrophobicity in-

cluded Hydrophobic Interaction Chromatography (HIC) and Salt-gradient Affinity-

Capture Self-Interaction Nano-Particle Spectroscopy (SCAG) [183]. Measurements

for self-association included: Cross-interaction chromatography (CIC); Clone self-

interaction by bio-layer interferometry (CSI) and Affinity-capture self-interaction

nanoparticle spectroscopy (AC-SINS) [184]. Measurements for polyreactivity
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included Binding to baculovirus particles (BVP), Baculovirus particle ELISA

(ELISA) [185].

Through these measurements, they identified key correlations between met-

rics of the same properties (AC-SINS and CIC; AC-SINS and CSI; ELISA and

BVP) but also some unexpected correlations between unrelated properties (HIC

and SMAC). Together, this demonstrates the interconnectivity of these developa-

bility features and how they affect each other. This work was continued in 2023

[103] where additional characteristics for clearance: FcRN retention time (FcRN-

RT) and binding to heparin (Hep.RT.3) [186], and polyspecificity were included:

binding to 2,4-dinitrophenol (DNP), Induced polyspecificity in the presence of ei-

ther iron or heme to Haemophilia Factor VIII (Fe.FVIII.2/Heme.FVIII.2), Comple-

ment (Fe.C3.2/Heme.C3.2), lysozyme (Fe.LysM.2/Heme.LysM.2), as well as folate

binding (FA.2).

Previous attempts to train predictive models on these experimental results in-

cluded the AbPred server, where machine learning models are available for in silico

predictions of these metrics on an antibody-by-antibody basis [107]. This software

used 20 amino acid propensities, previously established amino acid compositions to

encode VH and VL sequences into a numerical input for training. Using a selection of

linear models that were best suited to each metric, coefficient of determination (R2)

results for each predictor ranged from 0.08 (AS) to 0.39 (HIC). A similar approach

to predict developability was taken by Negron et al. [111] using a logistic model

fitted over the sequence characteristics of all clinical antibody sequences found in

TheraSabDab [117]. Compared with the Jain data, rank-order correlations (ρ) were
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Table 4.1: Descriptive statistics of the in vitro data taken from Jain et al. (2023).

Metric Abbreviation Median Stdev Desirability n Measurement
Melting temperature (Negated) Tm(Negated) -71 5.86 - 137 Stability
Accelerated Stability AS 0.04 0.12 - 137 Aggregation
Salt-gradient affinity-capture self-interaction nano-particle spectroscopy SGAC(Negated) -700 319.23 + 137 Hydrophobicity
Hydrophobic interaction chromatography HIC 9.89 1.23 - 137 Hydrophobicity
Stand-up monolayer adsorption chromatography SMAC 8.88 3.05 - 137 Colloid stability
Poly-specificity Reagent PSR 0 0.2 - 137 Non-specific binding
Affinity-capture self-interaction nanoparticle spectroscopy AC-SINS 1.74 10.4 - 137 Self-interaction
Cross-interaction chromatography CIC 8.87 0.85 - 137 Solubility
Clone self-interaction by bio-layer interferometry CSI -0.01 0.1 - 137 Self-interaction
FcRn relative retention time FcRn-RT 0.445 0.56 + 132 Clearence
Baculovirus particle ELISA ELISA 1.21 2.65 - 137 Non-specific binding
Binding to baculovirus particles BVP 2.34 4.32 - 137 Non-specific binding
Binding to 2,4-dinitrophenol DNP 0.245 0.79 - 112 Non-specific binding
Induced polyspecificity to FVIII (Fe2+) Fe.FVIII.2 3.27 1.69 - 114 Non-specific binding
Induced polyspecificity to C3 (Fe2+) Fe.C3.2 2.59 1.39 - 114 Non-specific binding
Induced polyspecificity to LysM (Fe2+) Fe.LysM.2 5.02 2.1 - 114 Non-specific binding
Induced polyspecificity to FVIII (Heme) Heme.FVIII.2 2.62 2.19 - 113 Non-specific binding
Induced polyspecificity to C3 (Heme) Heme.C3.2 3.1 2.73 - 113 Non-specific binding
Induced polyspecificity to LysM (Heme) Heme.LysM.2 3.99 3.07 - 113 Non-specific binding
Heme binding Heme.2 2.08 5.33 - 113 Non-specific binding
Folate binding FA.2 1.25 2.73 - 113 Non-specific binding
Heparin chromatography retention time Hep.RT.3 0.58 0.2 - 130 Non-specific binding

also between 0.2 and 0.3, which was notable as the models had not been trained

using these data, showing that these characteristics can indeed be trained on.

Similarly this chapter will demonstrate that some of the large language model

encodings are statistically correlated with experimental values provided by Jain et

al. [102, 103] for clinical stage antibodies and these encodings may be used for in

silico prediction of these metrics.

4.2.2 Datasets

4.2.2.1 Jain Developability Data

Experimental data for in vitro assays and amino acid sequences for 137 paired clini-

cal stage antibodies were taken from the supplementary material of Jain et al. [103].

In vitro assays performed, and measurements, are given in Table 4.1. Paired VH and

VL amino acid sequences for these therapeutics were found in the TheraSabDab

[33]. These sequences were then encoded with a selection of antibody LLMs given

in Section 2.4.
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4.2.3 Encodings from Language Models are Statistically Corre-

lated to Experimental Values

Similarly to Chapter 3, it was thought that feature selection could identify fea-

tures encoding information relevant to these developability characteristics, but in

this case, rather than using arbitrary numbers of features, features which were sta-

tistically correlated with the F-regression were selected. It was found that all of

the LLMs had significantly correlated datapoints to each characteristic using the F-

regression method. Significant features were identified from the p-value given by

the F-regression for the chance of its significant correlation (p < 0.05) to the experi-

mental measurement. Adjusted p-values (q-values) were given using the Benjamin-

Hochberg method (see Section 2.2.4), however significant values were not always

found for each metric. The counts of significantly associated features are given in

Table 4.2 for p-value and q-value levels. Included in this chapter were versions of

the ESM model with higher numbers of parameters: esm_t35_650M_UR50D

(ESM 650M) and esm2_t36_3B_UR50D (ESM 3B) as larger LLMs to include.

4.2.4 Positions of Selected Features in the Antibody Sequences

This led to finding where such correlated features lay in the sequence that could

be used to train machine learning classifiers (Figure 4.1). This figure demonstrated

that most of the metrics had numbers of features selected skewed to one particular

domain. For instance, HIC had more statistically associated features from the VH

domain than the VL domain at the p-value level, whereas the opposite was true of

FcRN-RT, SCAG, CIC which were more skewed to the VL domain. Distributions

esm_t35_650M_UR50D
esm2_t36_3B_UR50D
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Table 4.2: Number of statistically correlated features (p < 0.05 and q < 0.05) found by
F-regression for each metric and language model.

Model
Property Significance AntiBERTy ESM 8M ESM 650M ESM 3B AbLang Sapiens

All 130048 82560 330240 660480 195072 162560
Tm(Negated) p 18754 12812 50671 103039 31922 28616

q 248 82 969 1696 546 15
AS p 9750 7378 27962 53923 18753 16067

q 0 25 6 2 47 383
SGAC(Negated) p 13052 9173 37545 75668 25836 21927

q 1 0 0 0 0 0
HIC p 11378 11985 42787 90730 22510 17823

q 1 1158 586 2935 0 289
SMAC p 11562 9023 33961 69858 21944 15063

q 0 2 2 1 0 383
PSR p 17317 13114 58020 118638 36754 33445

q 1 0 1 0 1167 0
ACSINS p 13354 7440 29737 63391 25395 18444

q 0 0 0 0 1167 0
CIC p 15548 10442 42327 80619 32345 22880

q 38 90 812 1560 1875 1574
CSI p 4608 2896 13560 24375 5924 4102

q 0 0 0 0 0 200
FcRN-RT p 17799 10494 43921 86816 38278 27800

q 291 347 1234 2652 4248 6002
BVP p 10120 6390 29570 55287 22168 13985

q 0 0 0 0 2 3
DNP p 11070 5939 24841 46712 25107 12951

q 1 0 0 0 11 0
Fe.FVIII.2 p 31367 20234 81819 176026 66269 44311

q 9427 6154 23284 56764 37201 17348
Fe.C3.2 p 20880 12057 45268 97088 45896 3465

q 434 26 1 0 6862 0
Fe.LysM.2 p 31914 20790 85481 176069 69868 6286

q 10576 7196 29855 66198 43862 0
ELISA p 7438 4905 27922 49868 13409 11674

q 0 0 0 0 0 60
Heme.FVIII.2 p 4631 1807 7315 13067 5501 3312

q 0 0 0 0 0 0
Heme.C3.2 p 3850 1614 6930 11831 4679 3265

q 0 0 0 0 0 0
Heme.LysM.2 p 6238 4107 16048 29370 9775 6286

q 0 0 0 0 0 0
Heme.2 p 8433 6592 26117 53028 15216 12631

q 0 0 0 0 0 0
FA.2 p 8613 6592 22442 41365 17446 8983

q 0 5656 0 0 0 11
Hep.RT.3 p 8734 0 21477 37639 19923 7011

q 0 5414 17 0 327 0



4.2. Predicting Physicochemical Properties of antibodies 105

were roughly equal for Tm and Fe.FVIII.2. Noticeably, there are gaps in each of

the plots at the CDR loops where no features from these residues have been used.

This is especially true of residues in CDR1 and CDR3 of both the VH and VL do-

mains. Thus, it can be concluded that the F-regression is identifying features from

framework residues, rather than features from CDR loop residues to predict these

properties, most likely because they are less variable and it is easier to learn pat-

terns from framework encodings. This is very apparent from the high frequency

of features selected from residues in Framework 1 of the VL domain across all of

the metrics examined, except for HIC. Interestingly, however, the only feature to be

statistically correlated with HIC at the q-value level was found in CDR-H2.

4.2.5 Statistically Correlated Values May be Used for Prediction

For each metric, linear models were trained using all encodings and significantly

correlated encodings (p < 0.05 and q < 0.05) if available. The predicted values for

each antibody were calculated by Jackknife cross-validation (CV), and Spearman’s

rank correlation (ρ) was used to measure the predictive performance of the model.

Table 4.3 demonstrates that all models trained on all encodings were found

to have poor performance for each experimental metric. Performance was then

improved by selecting encodings that were statistically correlated with the experi-

mental metrics (p < 0.05) however, in most cases a lower predictive performance

was seen for encodings with higher statistical correlation (q < 0.05). This was seen

in HIC, PSR, FcRN-RT and DNP metrics, but examples were found where bet-

ter performance was found in the q < 0.05 significance level including Fe.FVIII2
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Figure 4.1: Correlated features to selected physicochemical properties across the antibody
sequence. Bar plot of counts of significantly associated AntiBERTy encodings
for each residue of VHand VLantibody domains along the Chothia numbering
scheme for the selected metric dataset measured by [102]. CDR1 (red), CDR2
(blue) and CDR3 (yellow) are highlighted.
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and Fe.LysM.2 (Table 4.3). It is easy to conclude that these relationships are due

to more values being significantly correlated at the p-value level than the q-value

level, however, for some features including Heme binding, models were not trained

beyond random chance for any number of features, and so these are judged to be

inadequate predictive power. The best examples of models trained were using p-

value correlated encoding, included: Tm (Negated); SCAG (Negated); HIC; CIC

and DNP which were all obtained using the encodings from the AntiBERTy LLM

(Figure 4.2).

Figure 4.2: Scatter plots of linear models fitted to selected experimental metrics. Predic-
tions were obtained by Jackknife sampling. Spearman’s Rank Correlation (ρ)
and mean absolute error (MAE) is given for each model. Blue hue indicates
95% confidence interval.

For both levels of significance, AntiBERTy had a greater overall ability to train

linear models to predict these experimental values, and Sapiens had the poorest

predictive power (where significant values were available). Individual examples of

models better than those trained using the AntiBERTy encodings of the highest sta-
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Table 4.3: Spearman’s Rank Correlation (ρ) scores of linear models trained on experimen-
tal data each for language model and statistically significant (p < 0.05 and q <
0.05) features.

Significance AntiBERTy ESM 8 ESM 650M ESM 3B AbLang Sapiens
Tm(Negated) All 0.13 -0.04 0.17 -0.06 -0.06 -0.13

p 0.56 0.29 0.42 0.27 0.27 0.19
q 0.43 -0.14 0.12 0.4 -0.45 0.24

AS All -0.36 -0.33 -0.29 -0.26 -0.41
p -0.04 0.01 0.03 -0.02 -0.07
q 0.02 0.04 -0.09 -0.1 -1.04

SGAC(Negated) All 0.05 -0.19 -0.12 -0.17 -0.08 -0.11
p 0.58
q 0.16

HIC All 0.16 0.23 0.24 0.23 0.22 0.14
p 0.66 0.45 0.47 0.46 0 0.43
q 0.14 0.35 0.24 0.51 0 -1.35

SMAC All 0.03 -0.14 -0.01 -0.09 -0.1 -0.15
p 0.11 0.27 0.29 0 0.02
q 0.11 0.15 0.15 0 -0.25

PSR All 0.03 -0.31 -0.27 -0.26 -0.18 -0.16
p 0.51 0 0.16 0 0.18
q 0.17 0 0.18 0 0.18

ACSINS All -0.05 -0.35 -0.26 -0.37 -0.17 -0.28
p 0.24
q 0.21

CIC All 0.26 0.15 0.17 0.16 0.23 0.11
p 0.65 0.41 0.44 0.49 0.47 0.35
q 0.44 -0.32 0.3 0.3 0.38 -0.22

CSI All -0.24 -0.58 -0.49 -0.6 -0.35 -0.47
p -0.21
q -2.38

FcRN-RT All 0.17 -0.08 -0.01 -0.03 0.09 -0.04
p 0.6 0.28 0.42 0.39 0.37 0.15
q 0.26 0.19 0.07 -0.04 0.46 -0.36

BVP All -0.03 -0.33 -0.23 -0.29 -0.23 -0.33
p 0.23 0.13
q 0.3 0.25

DNP All 0.01 -0.58 -0.62 -0.7 -0.22 -0.44
p 0.65 0.24
q 0.2 0.42

Fe.FVIII.2 All 0.15 0.04 -0.12 -0.02 0.01 -0.01
p 0.4 0.2 0.04 0.14 0.19 0.26
q 0.47 0.31 0.06 0.16 0.19 0.2

Fe.C3.2 All -0.04 -0.2 -0.35 -0.25 -0.18 -0.19
p 0.41 0.26 0.13 0.11 0.26
q 0.46 0.45 0.24 0.25 -1.28

Fe.LysM.2 All 0.21 0.1 0.11 0.14 0.11 0.09
p 0.45 0.38 0.3 0.32 0.22 0.29
q 0.51 0.44 0.32 0.35 0.24 0.16

ELISA All -0.1 -0.43 -0.36 -0.37 -0.38 -0.36
Heme.FVIII.2 All -0.13 -0.56 -0.44 -0.31 -0.39 -0.32
Heme.C3.2 All -0.17 -0.41 -0.45 -0.35 -0.49 -0.36
Heme.LysM.2 All -0.04 -0.23 -0.12 -0.05 -0.17
Heme.2 All -0.16 -0.5 -0.47 -0.56 -0.33 -0.5
FA.2 All -0.09 -0.52 -0.44 -0.54 -0.52 -0.51
Hep.RT.3 All 0.1 0.12 0.08 0.13 0.16 -0.06

Missing values denote no features found at given significance level
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tistical association (q < 0.05) were found for FcRN-RT using q-level associated

encodings from AbLang (ρ=0.46, MAE=0.31) and HIC using q-value level encod-

ings from ESM 3B (ρ=0.0.51, MAE=0.69) and (Figure 4.3). This demonstrates that

the architecture of some models may be more advantageous than others in encoding

particular experimental features.

Figure 4.3: Scatter plots of comparing linear models fitted from different language models.
a) FcRN-RT using AntiBERTy and the AbLang language models and b) HIC
metrics from using AntiBERTy and the esm2 t36 3B UR50D language mod-
els. Experimental training data was taken from [102, 103] for where predic-
tions were obtained by Jackknife sampling. Spearman’s Rank Correlation(ρ)
and mean absolute error (MAE) is given for each model. Blue hue indicates
95% confidence interval.
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4.3 Predicting Immunogenicity of Antibodies

4.3.1 Introduction

While antibodies are part of the human immune system, their exogenous origin

makes them susceptible to patient immunogenicity, where anti-drug antibodies

(ADAs) are generated as part of an anti-antibody response (AAR) [108, 1]. The

most common pathways to this response are T cell-dependent mechanisms, includ-

ing Th2 cell response, where fragments of antibodies are internalised by antigen-

presenting cells and presented to T cells in the interaction of the MHC Class II

molecule and the T cell receptor, releasing cytokines to raise an antibody response

[44, 187]. Alternatively, B cell pathways have demonstrated a cross-linking of BCR

with antibody drugs to generate the release of ADAs [188]. At best, the result of this

pathway is the loss of efficacy of the drug as ADAs remove the therapeutic agent

from the circulation and at worst, it can result in anaphylactic shock [45]. This can

be a hugely costly obstacle to clinical trials, which this thesis aims to avoid. The

most clinically relevant measure of immunogenicity is to examine the proportion of

cohort patients who have raised ADAs to their treatment. However, this has not al-

ways been measured in trials, which in these cases, means that it is hard to separate

failure from poor efficacy or failure for high immunogenicity [104, 188].

While, on average, antibodies of murine origin are more immunogenic to hu-

mans [104], examples exist of highly immunogenic fully human antibodies, adali-

mumab (ADA=28%) and golimumab (ADA=30%) [188]. On the other hand, there

are chimeric antibodies where no ADAs have been observed: galiximab [189] and
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futuximab [190]. Therefore, the assumption cannot be made that developing a fully

human antibody would be non-immunogenic. For this reason, it has become impor-

tant to develop tools with which to predict the immunogenicity of a new agent.

Although immune recruitment can drive immunogenicity [191, 192, 193],

these risk factors can be mitigated by using an antibody isotype with perceived

silent immunogenicity such as IgG4 [194], or by introducing silencing mutations

in constant domains which interfere with the antibody binding to the Fcγ receptor

[195, 73]. These have shown an ability to reduce the immune response raised by

these antibodies; however, it is suspected that these solutions are not always applied

due to conflicting intellectual property and cost, so it is still necessary to investigate

other drivers of immunogenicity that may be related to the VH and VL domains.

Therefore, it is important to investigate other features of the antibodies that are

associated with immunogenicity. For example, the propensity for drug aggregation

is believed to contribute to its immunogenicity as they form a large structure when

aggregated in blood, which is more likely to interact with endogenous antibodies

[95]. Although impurities in drug formulation may contribute to aggregation, more

attention has been paid to the sequence and structure features of antibodies them-

selves [96]. This is likely to be driven by the presence of patches of hydrophobic

residues the solvent-accessible surface of the protein [3]. Furthermore, sites for

post-translational modification including glycosylation [97, 98]; deamidation [99]

and oxidation [100] present risks in protein stability that could lead to aggregation or

a higher chance of immune recognition through heterogeneity [101]. Furthermore,

aggregation is a concern for the shelf life of a drug, so targeting this characteristic
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would be an effective way to make antibody drugs more accessible [3].

This chapter aims to find predictors of antibody immunogenicity using the

ADA dataset [104] available to find an acceptable cut-off for tolerated antibody

immunogenicity.

4.3.2 Datasets

4.3.2.1 ADA Incidences

Immunogenicity data of therapeutics were taken from the supplementary material

of Marks et al. [104] using data from Clavero-Alverez et al. [119], who report the

mean ADA incidence of therapeutics. VH and VL sequences and clinical status of

the specified antibodies were taken from the October 2021 release of TheraSabDab

[110]. Some examples were excluded including bispecific antibody drugs, antibody

drug conjugates and drugs which did not have sequences stored in TheraSabDab.

These mAbs were then grouped by species origin which was established by a litera-

ture search. In total, the ADA data presented in this report represent 71 therapeutic

human antibodies, 89 humanised antibodies, 19 chimeric antibodies and 8 murine,

totalling 188 antibodies at varying stages of clinical approval.

4.3.3 Immunogenicity Scores of Clinical mAbs

The ADA data was examined to establish an appropriate cut-off point on which the

highest immunogenicity (and therefore the highest ADA) rates are tolerated from

approved mAbs. Hu-mAb is a software for predicting antibody immunogenicity,

giving a score between 0 (mouse) and 1 (human), assuming that antibodies similar

to human sequences would be less immunogenic [104] (see Section 2.4.3). Each of
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the therapeutic antibodies collected here had their Hu-mAb score predicted using

the software and plotted against their with ADA data collected from Marks et al..

The data was colour coded by stage of approval status and by species origin.

It is shown in Figure 4.4a that there is no clear separation in the data, con-

trary to what was previously hypothesised. Many approved mAbs show a high

incidence of ADA, and while some highly immunogenic drugs are discontinued, it

is also shown that some discontinued drugs have a no recorded incidences of ADA.

In contrast, mAbs cluster much better by their source, as shown in Figure 4.4b.

Human mAbs mostly but not always cluster with the highest Hu-mAb scores, re-

gardless of whether they have a higher incidence of ADA. Humanised mAbs show

more variability in scoring, whereas most chimeric mAbs score very poorly on the

Hu-mAb scale, even if they have low immunogenicity. As expected, the five most

immunogenic drugs are murine in origin and are correctly predicted as such being

immunogenic. Despite this, a highly immunogenic humanised drug does not score

poorly on the Hu-mAb scale, but an immunogenic chimeric does. No clear cut-off

point for tolerated immunogenicity was found to separate approved and discontin-

ued drugs.

4.3.4 Supervised Classification Methods for Predicting

Immunogenicity

As no natural cut-off was observed for immunogenic and non-immunogenic mAb

therapeutics, it was thought that binary classifiers of immunogenicity could be

trained using arbitrary cut-offs for immunogenicity. Sequences of VH and VL se-
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Figure 4.4: Scatter plots of Hu-mab [104] immunogenicity prediction scores against known
Anti-Drug Antibody (ADA) incidence (%). Colour coded plots highlight a)
Approval status as of October 2021 and b) Antibody origin.

Table 4.4: Group sizes according to ADA threshold split.

ADA Threshold Non-immunogenic Immunogenic
1% 61 136
2% 77 120
5% 128 69
10% 155 42

quences were encoded using residue level encodings, amino acid compositions and

language model encodings as used in previous chapters and then divided by arbi-

trary immunogenicity thresholds 1%, 2%, 5% and 10%. 10% was considered the

maximum, as only a minority of the data reports incidences of ADA above this

value (Table 4.4).

4.3.4.1 Residue Level Encodings

Each split of the ADA dataset was encoded using the 14 methods of residue level

encodings (see Section 2.5.1), which were concatenated together to give 65894 fea-

tures per encoded paired sequence. These encoded sequences were used to train 15
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Figure 4.5: Classifiers trained against ADA scores cut offs for 188 therapeutics encoded
with residue level encodings. MCC scores and standard deviation of 15 bi-
nary machine learning predictors with 10-fold cross validation classifying test
split of immunogenic and non immunogenic clinical antibodies dataset encoded
with 14 different residue-level encoding methods. Cutoffs for considering im-
munogenic and non-immunogenic are set at 1%, 2%, 5% and 10% ADA inci-
dence.

different supervised machine learning classifiers with 10-fold CV at each thresh-

old for the previously used values of features selected by the F-regression approach

(k=[1, 10, 50, 100, 500, 1000, 2500, 5000]). Generally, performance was moderate

and similar across all classifiers for all values of k (Figure ??). Details of machine

learning classifiers are given in Section 2.8.1.

4.3.4.2 Amino Acid Encodings

Amino acid compositions were additionally used in place of residue level encodings

to see if these predictions could be improved. 19330 features were encoded using
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Figure 4.6: Classifiers trained against ADA scores cut offs for 188 therapeutics encoded
with amino acid compositions. MCC scores and standard deviation of 15 bi-
nary machine learning predictors with 10-fold cross validation classifying test
split of immunogenic and non immunogenic clinical antibodies dataset encoded
with amino acid composition encoding methods. Cutoffs for considering im-
munogenic and non-immunogenic are set at 1%, 2%, 5% and 10% ADA inci-
dence.

ProPythia software [154] (see Section 2.5.2). These encodings were used to train

the same set of 15 machine learning classifiers with 10-fold CV. The best perfor-

mance with these encoding methods was seen for the Gaussian Naive Bayes with

all cut-offs, with different values of k for the feature selection. Arguably the best

performance was seen at the 1% threshold (MCC = 0.77±0.14) where k=1000 and

10% (MCC=0.74±0.18) where k=500) (Figure 4.6).
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4.3.4.3 Language Model Encodings

After the amino acid composition statistics, the same sequences were encoded with

the AntiBERTy language model [179] to then train the 15 machine learning predic-

tors with 10-fold CV. Similar performance was observed for SGDClassifier, Ridge

Classifier, Ridge Classifier CV, Calbrated Classifier CV, LinearSVC, Logistic Re-

gression and Logistic RegressionCV for 1% and 2% cut-offs, but general predic-

tive performance decreased for the 5% and 10% cut-offs where all classifiers per-

formed similarly. In the case of the 1% threshold, the best performance observed

was around the same for the Ridge Classifier (MCC=0.73±0.17) where k=1000 than

as the Logistic Regression CV at the 2% threshold (MCC=0.72±0.15) where k=500.

It was seen that for higher thresholds, the MCC performance was seen to be poorer

with larger standard deviations, as demonstrated by the best predictors from these

thresholds. The best restuls were seen when the partition between immunogenic

and non-immunogenic was set at 5% (MCC=0.63±0.18) with Logistic Regression

and at 10% (MCC=0.58±0.25) with LinearSVC, both where k=500 (Figure 4.7).

To examine this further, the probability thresholds required to accept a positive

prediction were adjusted from 0.5, 0.6, 0.7, 0.8 and 0.9 to see if a better MCC score

could be achieved. However, it was not observed that this significantly improved

the MCC scores (Figure 4.8).

Like before with the previous experimental metrics, the positions of the top

k=1000 features from the encodings related to immunogenicity were searched for

at each threshold. As expected the distribution of the 1% and 2% threshold look

very similar to each other, but as the threshold for what is considered immunogenic
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Figure 4.7: Classifiers trained against ADA scores cut-offs for 188 therapeutics encoded
with the AntiBERTy LLM. MCC scores and standard deviation of 15 binary
machine learning predictors with 10-fold cross validation classifying test split
of immunogenic and non immunogenic clinical antibodies dataset encoded An-
tiBERTy Language Model. Cutoffs for considering immunogenic and non-
immunogenic are set at 1%, 2%, 5% and 10% ADA incidence.

Figure 4.8: Using probability thresholds to improve MCC predictions. MCC scores and
standard deviation of 15 binary machine learning predictors classifying test
split of immunogenic and non immunogenic clinical antibodies dataset encoded
AntiBERTy Language Model. Cutoffs for considering immunogenic and non-
immunogenic are set at 1% over a set of thresholds to consider a positive value.
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increases, there are fewer features taken from the VL domain and an increase in

features taken from the Framework regions of the VH domain (Figure 4.9). This is

especially true for Framework 1, 3 and 4 where there are a number of residues with

high frequencies of features correlated with immunogenicity. Despite this, however,

these could be species differences between low immunogenic human mAbs and

highly immunogenic murine mAbs.

In general, the classifiers trained in this section demonstrate a strong discrim-

ination of immunogenic and non-immunogenic sequences, particularly when set at

the 1% ADA cut-off point.

4.3.5 G2Score

It was then thought a newer statistical approach could then overcome the binary

classifiers by capitalising on the wealth of antibody sequence data available in on-

line repositories. The G2score was devised as a similar statistic to GScore [109] but

with a more extensive database of sequences corresponding to antibody germlines,

enabling us to better capture the variation seen within them. We demonstrate its

application in indicating the immunogenicity of human antibodies and predicting

the incidence of ADA generation in a cohort of patients.

4.3.5.1 Development of the G2score

The dataset used to generate the original GScore [109] (Section 2.4.2) was limited

by the relatively small dataset available in KabatMan [114], in some cases, very

small numbers of proteins sequences were available from a given germline. With

so many more sequences available from NGS, it was decided to reproduce this
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Figure 4.9: Frequency counts for features selected by F-regression (k=1000) at different
ADA thresholds. Bar plot of counts of significantly associated AntiBERTy
encodings for each residue of VH and VL antibody domains along the Chothia
numbering scheme for the selected metric dataset measured by Jain et al. [102].
CDR1 (red), CDR2 (blue) and CDR3 (yellow) are highlighted.



4.3. Predicting Immunogenicity of Antibodies 121

statistic with human sequences from the OAS [118]. Firstly, datasets of unpaired

heavy and light sequences were downloaded from the OAS and joined into a total

of 34,768,256 VL and 16,871,584 VH human sequences representing 87 IGHV, 41

IGLV and 56 IGKV germline genes. Accession numbers for VH domain sequences

can be found in Data files 6 for VH sequences and Data file 7 for VL sequences.

The corresponding germline genes for each sequence were found using AGL (see

Section 2.3.8). The germline gene data sets were sorted by family, where families

with a large number of representatives were reduced to a maximum of 10,000 by

random sampling.

The G2Score was then made in the same way as the HScore and the GScore,

but the alignments were carried out using BLAST [137], which gives a identity

score for the target sequence against all other sequences for representatives of that

germline family. For each germline, there is a mean identity score which is then

used to calculate a Z score for newly input sequences.

4.3.5.2 G2Score Pipeline

For an input sequence, the germline family is found using AGL and it is aligned to

every other sequence in the dataset for that germline family using BLAST, giving

a similarity score. The mean similarity score is then calculated using the Z score

equation (Equation 4.1).

Z =
x−µ

σ
(4.1)
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• Z is the final G2Score

• x is the mean similarity score of the naive sequence to all other sequences in

the germline family

• µ is the mean of means similarity score of each sequence in the germline

compared to every other sequence

• σ is the standard deviation of the mean of means similarity score

4.3.5.3 Benchmarking the G2Score

Immunogenicity prediction scores for all antibodies of the ADA dataset were cal-

culated and presented for Human, Humanised, Chimeric and Mouse mAbs, respec-

tively, and shown as scatter plots. The minimum score out of their VH and VL do-

mains with the assumption that if it were an immunogenic antibody, the minimum

score would be more representative of this than taking the higher score or the mean

of the two scores.

The G2Score shows an improved correlation coefficient score (r) compared

with the original GScore for human mAbs (r=-0.23, r=-0.16, respectively) and

HScore (r=0). Figure 4.10 demonstrates poor performance of Hu-mAb with hu-

man mAbs. Hu-mAb had the lowest prediction ability amongst human antibod-

ies, but showed the best correlated predictive ability for humanised antibodies (r=-

0.27). HScore (r=-0.03), GScore (r=-0.09) and G2score (r=-0.08) did not perform

well when predicting the immunogenicity of humanised mAbs as no correlation of

scores to immunogenicity was found with any of these metrics.
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Despite G2Score being the most predictive of human antibody immuno-

genicity, the most immunogenic human antibody (Utomilumab: G2Score=0.58,

ADA=40.7) received a higher G2 score, compared with less immunogenic anti-

bodies. However, the ClusterResidues software for detecting patches of unusual

residues found that this had three patches, which was the most number of patches

found on an input antibody. The second most immunogenic antibody, (Nirsevimab:

G2Score=0.00, ADA=28) had two patches, but it cannot be ignored that there are

many low-immunogenic antibodies with two patches.

4.3.6 Predicting ADA Incidence using Regression Models

Another hypothesis was that if the incidence of ADA could be predicted using these

encodings of the mAb therapeutics, it would be a clinically relevant prediction of

antibody immunogenicity and more informative about the care needed when an an-

tibody is entered into trials. This was first attempted using linear models, which are

lightweight and fast to train. This was done by encoding the sequences from the

ADA dataset with both the amino acid compositions, or AntiBERTy LLM encod-

ings using features from those encodings which were statistically correlated to the

ADA score to train these linear models.

4.3.6.1 Linear Models

Linear models were trained on the encoded sequences using the sklearn.li

near_model.LinearRegression Python module. Performance of these

models was evaluated in a jackknife fashion as described in the methods section

of this thesis, where a prediction is given for each data point based on the model

sklearn.linear_model.LinearRegression
sklearn.linear_model.LinearRegression
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Figure 4.10: Comparison of immunogenicity prediction software for human, humanized,
chimeric, mouse and all clinical antibodies. Scatter plots are given for each
combination of predictor and antibody type with regression line plotted along-
side showing correlation coefficient (r). Points show number of unusual
patches found in each antibody (blue=0, yellow=1, green=2, red=>2). Blue
hue represents 95% confidence interval across ADA% scores.
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being trained on each other data point. Overall performance was measured with

Spearman’s rank correlation (ρ). When all features were used to train the linear

model, poor performance was observed with amino acid encodings (Figure 4.11a),

but improvement was observed when using AntiBERTy encodings (Figure 4.11b),

especially when using statistically correlated features (ρ=0.34, p < 0.05; ρ=0.37, q

< 0.05). This increase in performance was also seen to have the ability to predict

the higher incidence of ADA in mouse antibodies but there was only a small perfor-

mance increase between the p-value significant and q-value significant features.

It was also checked to see if removing mouse and chimeric antibodies from

this dataset would improve these predictions, however, in the case of amino acid

compositions, no observable improvement was seen. An improvement was seen

in p-value significant AntiBERTy encodings (ρ=0.44; Figure 4.12), however this

training dataset excludes many of the high incidence ADA mAbs that are important

to learn from, and so including mouse and chimeric antibodies may result in a more

generalisable model.

4.3.7 Deep Learning Models

It was checked if these predictions could be improved by applying a deep learning

regression model to the problem. A basic model was established in pytorch to take

an input layer of k nodes, where k was the number of features per data point there

were 4096 nodes in the first hidden layer. Following that 6 additional hidden layers

using the ReLU activation function, all halving in node number, were used until at

the seventh layer, a single value is outputted from 32 input nodes. Other architec-
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Figure 4.11: Linear models for ADA prediction. Scatter plots of jackknife predictions of
linear models trained against all ADA incidence and a) amino acid encodings
or b) language model encodings given for all data points in the encoding,
all data points correlated with ADA incidence (p < 0.05) and all data points
correlated with ADA incidence (q < 0.05).

tures including 5 hidden layers with more numbers of nodes were tried, however,

the model with 7 hidden layers was found to be the best achieved at predicting.

This model was also used to predict the incidence of ADA using amino acid

compositions (Figure 4.13a) and AntiBERTy encodings (Figure 4.13b). An ADA

prediction was given for each data point using each model using cross-validation

with 40 splits rather than Jackknifing, to be more time efficient. It was seen that

performance given for language model encodings was on the whole better than that

for amino acid compositions, however, in terms of correlation, it was not an im-

provement over the more simple linear models given. This would indicate that there

is merit to this predictive model.
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Figure 4.12: Linear models for human and humanised antibody ADA prediction. Scatter
plots of jackknife predictions of linear models trained against all human and
humanised incidence and a) amino acid encodings or b) language model en-
codings given for all data points in the encoding, all data points correlated with
ADA incidence (p<0.05) and all data points correlated with ADA incidence
(q<0.05).

Figure 4.13: Deep learning models for ADA prediction. Scatter plots of predictions of
Deep learning model trained against all ADA incidence data using sequences
encoded by a) amino acid encodings or b) language model encodings given for
all data points in the encoding, all data points correlated with ADA incidence
(p<0.05) and all data points correlated with ADA incidence (q<0.05).
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4.4 Discussion and Conclusions

This chapter has demonstrated that antibody LLMs can be used to predict physic-

ochemical properties and immunogenicity of given antibodies which are relevant

characteristics to developability. This was done by training predictive models on

LLM encodings of mAbs where experimental data could be found, and have shown

that they may outperform other training data using sequence-based statistics [107]

or classifiers based on Random Forests [104]. From here these models can be made

into useful tools for high-throughput screening pipelines used in drug candidate se-

lection. While antibody LLMs require a larger compute power than sequence-based

statistics, this can be increased when using GPUs and this computational cost can

be outweighed by increased performance.

One of the greatest hurdles in this prediction with machine learning approaches

is the lack of available physicochemical and ADA data for mAbs of the clinical

stage and library antibodies [104, 102]. The data used in this chapter reflects only a

small portion of WHO-INN-described mAbs [67], and may not be transferable to li-

brary antibodies, as it has been shown earlier in this thesis that clinical stage mAbs

are selected dataset because they are expected to already satisfy the developabil-

ity properties required. This prompts the need for standardising these metrics and

gathering more data on more unusual and poorly developable antibodies to improve

these kinds of prediction in the future. However, it is good that from the limited

available data there is a breadth of ADA incidence rates among them.
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4.4.1 Physicochemical Properties Predictions

The approach taken agrees with the sentiments of the AbPred authors that linear

models are simple, with the advantage of interpretability, which gives additional

support that there is a real relationship between these encodings and the experimen-

tal features [107]. However, the known bias seen in language models has meant that

they have a tendency to revert to mean, and recognise features they have seen in

training [196]. This would lead to the hypothesis that point mutations necessary for

removing developability liabilities and lead optimisation may not affect the encod-

ings enough to predict significant changes in these developability characteristics.

This leads to the conclusion that these models work well to reduce the need for but

not entirely replace, experimentation to discover antibodies suitable for therapeutic

use.

Because these models were only trained on clinical stage mAbs which mostly

occupied a narrow range in a given metric, it was seen that there was a tendency to

overfit. This notion is supported by the observation that the models underestimated

extreme values because few of them have been included in the dataset. This was

also observed by Hebditch and Warwicker [107]. Although an obvious solution to

this would be to add experimental values for antibodies calculated by other papers,

these datasets are not directly comparable as stated in Licari et al. [197], different

experimental conditions, including pH and salinity, can yield different results for

given properties due to conformational changes that expose or connect small hy-

drophobic surface patches. Together, this incentivises the need not only to publish

more varied experimental data which include negative examples, but also to stan-
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dardise protocols so more generalisable models can be trained with less error.

Although models with high predictive correlation scores could be trained us-

ing p-value level encodings, the results warn of cases where q-value level encodings

could not be found for that metric. Because multiple tests must be used to find these

relationships and language model encodings have hundreds of thousands of data

points, q-value significant encodings indicate a real relationship between those en-

codings and the experimental value. Using encodings where there is no indication

of a real statistical relationship could result in an overfitted model based on encod-

ings that happen to be correlated by chance. For this reason, allowances were made

for predictors which are trained on all p-value level encodings when these include

encodings which pass q < 0.05 statistical threshold.

4.4.2 Discussing Immunogenicity Prediction

In this chapter, it was attempted to establish an estimated ADA incidence ‘cut-

off’ for where immunogenic drugs are no longer tolerated, however this was not

observed. Different methods of identifying immunogenic antibodies were then de-

vised through binary classifiers, similarity statistics and predictive models to predict

the ADA for therapeutic antibodies.

As expected, the highest ADA incidence were seen to come from mice [104].

Moxetumomab [198] and Racotumomab [199] are murine mAb drugs for the treat-

ment of tumours where patients will likely be placed on other immunosuppressive

drugs and treated acutely and may be less likely to mount AAR (Moxetumomab was

discontinued in 2023 for lack of sales, not efficacy or safety reasons 1). This is in

1https://www.onclive.com/view/astrazeneca-to-discontinue-moxetum

https://www.onclive.com/view/astrazeneca-to-discontinue-moxetumomab-pasudotox-in-us-for-hairy-cell-leukemia
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contrast to Adalimumab, a human antibody used for chronic treatment of rheuma-

toid arthritis where there is likely to be an over-activation of the immune system

at the site it is needed [200]. From this it was concluded that the clinical context

of a drug has a large bearing on how much the immunogenicity will affect its ac-

tion. This includes patients who are immunosuppressed or have overactive immune

systems, which could affect how readily they would mount an AAR. Additionally,

species differences can influence these models and so more examples of highly

immunogenic human antibodies would greatly improve the reliability of these pre-

dictors.

This led to the selection of arbitrary cutoffs to establish immunogenicity with

binary classifiers, where the best performance was observed in classifying antibod-

ies where the immunogenicity AAR threshold was set at 1% or 2%. However in all

cases, large standard deviations across CV folds indicates that the performance of

the classifier may have a heavy reliance on the training dataset.

In the case of the statistical approach, the newly developed G2Score showed

an improvement in the ability to score immunogenic human antibodies with a lower

score than the previously established GScore statistic and Hu-mAb [104]. Despite

this, since the G2Score is a relative score, choosing a cut-off where there is no

tolerated cut-off is a difficult task.

The third approach taken was to use antibody encoding methods to train linear

models to predict ADA incidences in antibodies. Moderate correlation between pre-

dicted and experimental values was found when the p-value associated data points

omab-pasudotox-in-us-for-hairy-cell-leukemia
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were used to train a linear model, however, because of the dataset being heavily

skewed to lower immunogenicity antibodies, these models were poorly predictive

of highly immunogenic antibodies, and so the binary classifier approach was pre-

ferred.

The use of binary classifiers was the most successful approach to predict an-

tibodies that would have and incidence of ADA above a given threshold. In this

case, the most consistent performance was observed for the 2% threshold. This

leads to the hypothesis that the characteristics linked to immunogenicity are en-

coded with the AntiBERTy language model. For the purposes of the pipeline con-

structed throughout this thesis, the results suggest that this kind of binary classifier

is more informative than using a score because we demonstrate that it has similar

performance for antibodies of human, chimeric, and murine origin unlike Hu-Mab

[104].

4.5 Conclusion

To conclude this chapter, the ambition of using experimental datasets to predict

physiochemcial properties of antibodies can only be achieved by collecting datasets

which demonstrate a range of values for given metrics so, which would give more

generalisable and less overfitted models. Having said that, this chapter has demon-

strated that the emphasis of how much these metrics are taken into account for a

given mAbs is dependent on the clinical context where it is used. For this reason,

binary immunogenicity classifiers for predicting immunogenicity and linear models

predicting features linked to developability can be added as an optional step to the
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pipeline constructed in the thesis to identify antibodies with clinical stage proper-

ties.



Chapter 5

Separating Approved and

Discontinued Clinical mAbs

5.1 Introduction

Once a lead clinical candidate with suitable developability properties has been iden-

tified, there is no guarantee it will be successful in clinical trials. This has been

shown throughout the thesis in that mAbs used from different clinical stages share

a narrow range of developability properties, and yet some have failed at clinical

trials and others were successful. Therefore, an additional set of experiments was

conducted in order to investigate whether predicting success at clinical trials could

be done. Using the previously established method for encoding these sequences, it

was hypothesised that there could be a difference learnt between market-approved

mAbs and mAbs which were discontinued during clinical trials.

This chapter sees binary classifiers trained to classify approved and discontin-

ued clinical mAbs, and an investigation as to how these classifiers were able to do
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so. What follows is a detailed characterisation of the physicochemical properties of

the approved and discontinued groups and identifying what features the models are

learning, because this has application in learning what antibodies will pass clinical

trials in the future.

5.2 Datasets

5.2.1 Approved and Discontinued Antibodies

VH and VL sequences of 115 approved mAb drugs and 154 discontinued mAbs

labelled ‘Whole mAb’ were collected from the October 2021 release of the

TheraSabDab database [117]. Unlike previous chapters in which only human-

derived mAbs were selected, in this case mAbs of all sources were selected to

maximise the training dataset. A literature search was carried out to establish the

reasons for discontinuation for all of the discontinued mAbs. Eight drugs were dis-

continued for marketing or financial reasons, and removed from the discontinued

dataset because these could potentially be mAbs that otherwise would have passed

clinical trials. Edrecolomab was also removed from the approved dataset and added

to the discontinued dataset because this was withdrawn for efficacy reasons [201].

The result of this is a dataset of 115 approved antibodies (Data File 2) and 147 dis-

continued antibodies (Data File 9). The excluded sequences and sources for their

basis of exclusion are found in Table 5.1.
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Table 5.1: Discontinued clinical stage with non-clinical reasons for discontinuation.

Therapeutic Source
Opicinumab Fierce Biotech
Sifalimumab Guide to Pharmacology
Vorsetuzumab Creative Biolabs
Birtamimab Biopharma Dive
Epratuzumab GenEng News
Fulranumab JNJ
Zanolimumab Fierce Biotech

5.2.2 Held Back Dataset

From the October 2023 release of TheraSabDab, newly approved and discontinued

“Whole mAb” human therapeutic mAbs that were not found in the October 2021

release were used as a held back dataset for validation. This included 10 approved

mAbs (Data File 10) and 11 discontinued mAbs (Data File 11).

5.3 Encoding Amino Acid Sequences for Machine

Learning

A supervised machine learning approach to this problem was taken which would

train a model to separate market-approved (class 1) and discontinued (class 0)

mAbs. It was expected that this approach would NOT be successful because clini-

cal mAbs clustered closely in the unsupervised learning method, and because there

are so many reasons an antibody may fail in clinical trials, many of which are influ-

enced by external factors. However, it seemed necessary to predict this success for

the pipeline because including these discontinued clinical mAbs at previous stages

could potentially introduce liabilities to the pipeline that should be removed at later

stages. VH and VL sequences were spaced according to the Chothia numbering

https://www.fiercebiotech.com/biotech/after-years-setbacks-biogen-finally-culls-ms-dud-opicinumab#:~:text=In%20its%20third%2Dquarter%20financials,has%20discontinued%20development%20of%20opicinumab.%E2%80%9D
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?tab=clinical&ligandId=8257#:~:text=Sifalimumab%20reached%20Phase%202%20clinical,strategic%20business%20reasons%20in%202015.
https://www.creativebiolabs.net/vorsetuzumab-mafodotin-overview.htm
https://www.biopharmadive.com/news/astrazeneca-caelum-acquire-deal-amyloidosis/607369/
https://www.genengnews.com/topics/drug-discovery/ucb-terminates-epratuzumab-collaboration-with-immunomedics/
https://www.jnj.com/media-center/press-releases/janssen-announces-discontinuation-of-fulranumab-phase-3-development-program-in-osteoarthritis-pain
https://www.fiercebiotech.com/biotech/genmab-a-s-announces-discontinuation-of-zanolimumab-program-and-job-cuts#:~:text=COPENHAGEN%2C%20October%208%20%2FPRNewswire%2D,its%20headcount%20by%20101%20positions.


5.3. Encoding Amino Acid Sequences for Machine Learning 137

scheme and then encoded using residue level encodings, amino acid compositions

and language models for training with machine learning models.

5.3.1 Residue Level Encodings for machine learning

Residue-level encodings were performed using the SequenceEncoding software ob-

tained from Jing et al. [202] (see Section 2.5.1). The program works through parsing

through a sequence, and for each residue, the software looks up a stored array of

values corresponding to that residue, or that residue and those around it for the spec-

ified encoding method. The encoding methods used by this software are described

in Table 2.2. The advantage of using multiple methods of encoding is that a diverse

set features may be taken into account, including features that have already been in-

vestigated including pI (Meiler Parameters), thermostability (Kidera Factors) [144]

as well as hydrophobicity (hydrophobicity matrix) [147] and binary encodings (One

Hot Encoding) [202].

15 supervised machine learning models (see Section 2.8.1) were trained on

each encoded dataset to classify approved and discontinued mAbs. After 10-fold

CV, good performance was not seen with any of the encodings used (Figure 5.1).

All predictions have standard deviation error bars that pass through MCC=0, which

can be interpreted as the predictions being no better than random chance. This

method was attempted again using all the encoding methods joined together. This

gave 65894 numerical features for each antibody. Because the number of features

was much greater compared with any of the other methods used, feature selection

through F-regression was used to select the top k = [1, 10, 50, 100, 500, 1000, 2500,
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5000, 10000]. The result was an increased performance, with a top mean perfor-

mance (MCC=0.55±0.4) for the Gaussian Naive Bayes model with the selection of

1000 F-regression features (Figure ??). However, while this is the mean highest

performance, the standard deviation is 0.4, which is a larger spread, indicating that

this performance is highly dependent on the test-train split and not a trustworthy

result. From the experiment given here, it is likely that these methods of encodings

using preselected values for each amino acid do not allow sufficient data encod-

ing necessary information for training. Next, more dynamic methods of generating

encodings were tried.

5.3.2 Amino Acid Compositions

Another method of encoding protein sequences for machine learning was by amino

acid composition statistics. Amino acid compositions for VH and VL sequences were

individually encoded using the Propythia software [154] (see Section 2.5.2) and

concatenated to give a total of 19330 encodings per paired antibody sequence. The

best performing models were given by the GaussianNB classifier, particularly with

F-regression k=1000, (MCC=0.88±0.09) (Figure 5.3). This model appeared to have

much greater predictive performance than any of the other algorithms used in this

training, and a large improvement in predictive performance from the residue level

encodings method (MCC=0.55±0.4) despite the amino acid compositions method

having fewer features to use. Overall, there is an improvement in prediction perfor-

mance with other classifiers compared to the residue level encodings.
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Figure 5.1: Classifiers trained on market-approved and discontinued mAbs encoded with
14 different residue level encodings. MCC scores and standard deviation of
15 binary machine learning predictors classifying test split of approved and
discontinued therapeutic antibodies dataset. Charts have been split between
a) binary encodings b) physicochemical property encodings and c) interaction
matrices.
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Figure 5.2: Classifiers trained on market-approved and discontinued mAbs encoded with
14 concatenated residue level encodings. MCC scores and standard deviation
of 15 binary machine learning predictors classifying test split of approved and
discontinued therapeutic antibodies. F-regression thresholds are colour coded.

5.4 Language Model Encodings for Supervised Ma-

chine Learning

Despite good performance with amino acid composition encodings, it was decided

to use protein and antibody LLMs. Protein language models are an additional

method of encoding sequences into a numerical representation; however, the fea-

ture space is much denser and more complex than any of the previously used meth-

ods of encodings. It was hypothesised that this feature space could encode features

that would distinguish between mAbs that have been successful or unsuccessful at

clinical trials.
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Figure 5.3: Classifiers trained on market-approved and discontinued mAbs encoded with
amino acid compositions. MCC scores and standard deviation of 15 binary
machine learning predictors classifying test split of approved and discontin-
ued therapeutic antibodies dataset encoded with amino acid compositions. F-
regression thresholds are colour coded.

The same selection of supervised machine learning classifiers was used to clas-

sify approved and discontinued mAbs for each language model encoding method

with the same set of values of k for the F-regression. Generally, performance across

all classifiers was good, and it was seen that best overall performance was obtained

for the AntiBERTy encodings. Of these, the best performing model was LinearSVC

(MCC=0.80±0.1), Ridge Classifier CV (MCC=0.78±0.12) and Logistic regression

(MCC=0.80±0.1) when F-regression was set to k=2500 (Figure 5.4).

The LinearSVC model was selected as the best model with a mean sensitivity

and specificity of Sn=0.92 and Sp=0.93 respectively across each CV split at the de-



5.4. Language Model Encodings for Supervised Machine Learning 142

Figure 5.4: Classifiers trained on market-approved and discontinued mAbs encoded with
protein LLMs. MCC scores and standard deviation of 15 binary machine learn-
ing predictors classifying test split of approved and discontinued therapeutic
antibodies dataset encoded with four protein language models. F-regression
thresholds are colour coded.

fault probability threshold (0.5). As an experiment, the model was assessed in a case

where a higher probability threshold (0.8) was used to accept a positive result. This

did result in a loss in mean sensitivity and a small increase in specificity mean speci-

ficity, given as Sn=0.57 and Sp=0.98, resulting in a decreased MCC=0.61±0.16.

Confusion matrices for the raw outputs of this model at both probabilities can be

seen in Figure 5.5.
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Figure 5.5: Confusion matrices for each of 10 split of a dataset of approved (class 1) and
discontinued (class 0) antibodies. mAbs were encoded with the AntiBERTy
language model and trained using LinearSVC using a threshold was of a) 0.5
or b) 0.8.

5.5 Locating Features Across VH and VL Domains

It was then investigated whether there are concentrations of features selected by

the F-regression in particular areas of the sequences. Because CDR-H3 is mostly

associated with binding affinity, it was hypothesised that this would be where the

majority of characteristics were selected. The location of the features was found

using the method outlined in Section 2.11.2 (Figure 5.6). For k=1000 and k=2500

it was seen that CDR-H3 demonstrated some favouring of selected features on the
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Figure 5.6: Locations of selected AntiBERTy features across VH and VL domains of ap-
proved and discontinued mAbs. These are given for values of k=1000 and
k=2500. CDR loops are highlighted in red (CDR1), Blue (CDR2) and Yellow
(CDR3).

VH domain, particularly for k=2500. However, in both cases, more than twice the

number of features selected from the VH domain were selected from the VL do-

main, indicating that the predictor uses more information from the VL domain to

make these predictions. This was particularly true for positions in the framework

sequence before the CDR-L3 loop.

5.6 Improving the best classifiers

At this point, it has been decided that the best encoding methods to separate ap-

proved and discontinued antibodies are the amino acid compostitions with the
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Table 5.2: GaussianNB parameters for GridSearchCV.

Parameter Values
priors None, [0.1, 0.9], [0.2, 0.8], [0.3, 0.7], [0.4, 0.6], [0.5, 0.5], [0.6, 0.4], [0.7, 0.3], [0.8, 0.2], [0.9, 0.1]
var smoothing 10−9, 10−8, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1

Table 5.3: LinearSVC parameters for GridSearchCV.

Parameter Values
C 0.0001,0.001, 0.01, 0.1, 1, 10, 100
penalty l1, l2
tol 100,10,1,1e-1,1e-2,1e-3,1e-4,1e-5
class weight None, balanced
max iter 500, 1000, 2000
multi class ovr, crammer singer
fit intercept True, False

Gaussian Naive Bayes model (MCC=0.87±0.1, k=1000) and the encodings of the

AntiBERTy language model with the linearSVC and Calibrated Classifier models

(MCC=0.8±0.1, k=2500). It was checked if these performances could be further

improved using including GridsearchCV.

5.6.1 GridSearchCV

GridsearchCV is a systematic hyperparameterisation technique in which every com-

bination of a selection of values for parameters for a given model is tested for the

model the GaussianNB model (Table 5.2) and Linear SVC model (Table 5.3). The

result was a small change in performance for both models (Table 5.4). Conse-

quently, it was decided that this operation was not better than the default parame-

ters.

5.6.2 Increasing Probability Threshold

Rather than using binary results to classify predictions, probability scores for both

positive and negative predictions can be retrieved. This allows for additional param-
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Table 5.4: Best parameters selected from GridSearchCV with default and parameter MCC
scores.

Model Encodings k Default Parameters (MCC) Best Parameters (MCC) Best Parameters

LinearSVC AntiBERTy 2500 0.86±0.09 0.80±0.09

C: 10
class weight: balanced
fit intercept: True
max iter: 2000,
multi class: ovr,
penalty: l2,
tol: 1

GaussianNB Amino Acid Compositions 1000 0.85±0.09 0.85±0.09
priors: None
var smoothing: 1e-09

Figure 5.7: MCC scores of predictions of test split data set at different positive predic-
tion probability thresholds. Predictions were made using Linear SVC model
(k=2500) and GaussianNB model (k=1000).

eterisation by adjusting the threshold required to give a positive prediction above the

default (0.5). It was seen that MCC decreased for LinearSVC, but no change was

seen for the GaussianNB model when increasing the probability threshold (Fig-

ure 5.7).

5.7 Selecting a Model to Take Forward

As it was seen that optimising the models did not give an obvious increase in predic-

tive performance, a held back dataset was used to finally comment on which model

should be considered the best for use in the pipeline.
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Figure 5.8: Using probability thresholds to improve MCC prediction of approved and dis-
continued mAbs. MCC scores for the predictions on a held-back dataset at
different positive prediction probability thresholds. Predictions were made us-
ing the LinearSVC model (k=2500) and GaussianNB model (k=1000).

5.7.1 Testing Classifiers with a Held-Back Dataset

One of the dangers of a small training dataset is overfitting models to that dataset,

which is characterised by good predictive performance with examples from the

training dataset, but poor performance for examples not included. For this reason, a

held-back dataset of newly approved and discontinued antibodies that were not part

of the original training dataset was collected to check for overfitting. Adjusting the

probability threshold, the best MCC achieved for this group was MCC=0.5 when

the LinearSVC model was with the probability threshold was set to 0.8 (Figure 5.8).

In contrast, the GaussianNB classifier prediction was MCC=0.12 for all predictive

thresholds, indicating the model was overtrained to the original dataset.

To support the notion that the signal resulting from the F-regression is genuine,

pairwise distances between the clinical antibodies used in the training data and the

held-back dataset were calculated using sklearn.metrics.pairwise_d

sklearn.metrics.pairwise_distances
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Figure 5.9: Average Pairwise distances between held back antibodies and antibodies used
in training dataset using a) all AntiBERTy encodings and b) top encodings
(k=2500) selected using F-regression.

istances function in Python. It returns a Euclidean distance matrix for each

sequence in the training data against each sequence in the held-back data. It was

found that there were no significant differences between the two groups for the av-

erage distance between clinical and held back using an unpaired t-test (Figure 5.9a;

p=0.77) or the minimum distance and held back (Figure 5.9b; p=0.66). This means

that the two datasets are closely enough related to support the notion that a signal

found in the training dataset should also be found in the held back dataset. Further-

more, held back antibodies were found to cluster closely with clinical antibodies

used in the training dataset when used in a kernel principal component analysis

(kernel= radial basis function, γ=500) (Figure 5.10).

5.7.2 Speed of Encodings

The LinearSVC model was deemed the best for identifying approved antibodies

within clinical antibodies. Amino acid encodings have been slow to compute, taking

1.4 seconds per antibody, and may not be suitable for high-throughput encoding. In

sklearn.metrics.pairwise_distances
sklearn.metrics.pairwise_distances
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Figure 5.10: Kernel PCA demonstrating clustering of clinical antibodies used in training
with held back therapeutic mAbs.

contrast, because of the ability to utilise GPU hardware, denser protein language

model encoding only requires 0.02 seconds per antibody.

5.7.3 Approved vs. Discontinued Classifier on Repertoire

Dataset

The performance of this model using unlabelled repertoire sequences was tested.

These sequences have much more diversity than the clinical sequences this model

was trained on. An experiment was set up where the encoded OAS antibody dataset

(n=10,000) (see Section 3.2.1) was used as a test dataset for the LinearSVC model

trained in this chapter. This was not expected to perform well. The encoded data
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Figure 5.11: Confusion matrix of the predictions of approved (class 1) and discontinued
(class 0) for 10,000 human repertoire antibodies.

had the same features used by the LinearSVC model (k=2500), and the model was

tasked with classifying these antibodies. The approved held back antibodies (n=10)

were used as positive controls for this experiment.

As can be seen in Figure 5.11, the classifier predicted a roughly 2:1 ratio of

discontinued and approved antibodies (MCC=0.03, Sn=0.8, Sp=0.65). Potentially

because the previous approved vs. discontinued mAb dataset roughly followed this

ratio, the model has inherited this assumption, which could potentially be an over-

estimation of the number of clinical antibodies in the library. From this, it was

concluded that because this classifier had been trained on clinical sequences, it was

not suited to classifying repertoire sequences, demonstrating the need for the sepa-

rate model classifying clinical from repertoire.

5.7.4 Selection

The LinearSVC model trained on the AntiBERTy encodings was decidedly taken

forward to be the approved vs. discontinued predictor because it had better predic-
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tive performance on the held back dataset, and encodings take less time, making it

suitable for high-throughput analysis.

5.8 Physicochemical Properties of Approved and Dis-

continued mAbs

Due to the persistence of this learning effect, it was hypothesised that a statistical

difference in the two groups might be observed in one or more of the physicochem-

ical properties that could be likely to jeopardise a given mAb’s success in trials. A

larger number of physicochemical properties were investigated than before in order

to find any such differences and to explain why these models could be trained.

5.8.1 CDR-H3 Loop

The length of the CDR-H3 loop in antibodies could potentially be a liability if

it is too long [9]. Each approved and discontinued antibody was numbered with

AbNum and the CDR-H3 regions were identified using Chothia definitions. Both

the approved and discontinued groups had the same maximum and minimum CDR-

H3 length, 19 and 3, respectively. The mean length of the CDR-H3 regions between

approved and discontinued antibodies was 11 and 10, respectively, and there was no

significant difference between their distributions through unpaired t-test (p=0.23)

(Figure 5.12).

5.8.2 Thermostability

Thermostability (∆G) was predicted with the Oobatake Method [128] for the con-

jugated VH and VL sequences, the lone VH sequence and lone VL sequence for the



5.8. Physicochemical Properties of Approved and Discontinued mAbs 152

Figure 5.12: Approved and discontinued mAb CDR-H3 length. Violin plots of the distri-
butions describing the length of CDR-H3 loops in approved and discontinued
antibodies as defined by the Chothia numbering scheme.

dataset of approved and discontinued antibodies. It was seen that no statistical dif-

ferences were observed between the approved and discontinued dataset in any of

these groups by unpaired t-test: combined (p=0.88), VH (p=0.78), VL (p=0.55) and

mean of VH and VL sequence ∆ G per antibody (p=0.88) (Figure 5.13).

5.8.3 Isoelectric point

Isoelectric point (pI) was calculated with the IPC Method [129] for the conjugated

VH and VL sequences (p=0.99), the lone VH sequence (p=0.22) and lone VL sequence

(p=0.17) for the dataset of approved and discontinued antibodies. It was seen that

no statistical difference was observed between any of these groups between the

approved and discontinued dataset. This included the mean pI of the lone VH and VL

sequences (p=0.17) (Figure 5.14).

5.8.4 Key Residues

The idea of key residues is to identify residues in the CDR-H3 region linked to the

propensity to form beta sheets [133]. These are associated with antibody promiscu-

ity and could potentially lead to off-target effects in clinical scenarios. 9 approved
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Figure 5.13: Approved and discontinued mAb ∆G. Violin plots of the distributions describ-
ing ∆G values for market-approved and discontinued antibodies calculated us-
ing the Oobatake method for the combined VH andVL sequence, mean value of
the VH and VL sequence, lone VH sequence and loneVL sequence.

Table 5.5: Approved and discontinued antibodies with key residues in CDR-H3 Loop.

100 L 100C H 100EW 100 L, 100C H

Approved

Fremanezumab
Mepolizumab
Odesivimab
Polatuzumab
Secukinumab

Bevacizumab
Omalizumab Emapalumab Belimumab

Discontinued

Ciutumumab
Dectrekumab
Etokimab
Fresolimumab
Iladatuzumab
Tabalumab

Icrucumab
Tavolimab

Enoticumab
Firivumab
Lesofavumab
Gedivumab

and 12 discontinued antibodies were found to have these key residues in their CDR-

H3 loops (Figure 5.5). Only one antibody was found to have more than one key

residue, and this was from the approved dataset (Belimumab).
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Figure 5.14: Approved and discontinued mAb isoelectric point. Violin plots of the distri-
butions describing isoelectric point (pI) values of market-approved and dis-
continued antibodies calculated using the IPC method for the combined VH
and VL sequence, mean value of the VH andVL sequence, lone VH sequence
and loneVL sequence.

5.8.5 V-region Germline Gene Pairing

The germline genes of all clinical stage antibodies were evaluated with AGL. For

both approved and discontinued antibodies the most popular VH and VL V gene

families were IGHV3 and IGKV1 respectively. These germlines were also the most

popular pairing of gene families in each group (Figure 5.15). In both approved

and discontinued, the second most popular VH and VL V region gene families were

IGHV1 and IGKV3, however, in the approved group, the pairing of IGHV1/IGKV1

was proportionally greater than the pairing of IGHV3/IGKV3 in each group, but

this is the opposite case in the discontinued. It was seen using χ2 test that there was
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Figure 5.15: Approved and discontinued germline pairing proportions. Proportions of
germline gene families in approved (a) and discontinued (b) antibodies.
Colour coding for VH , VL and Pairing categories are consistent for approved
and discontinued figures.

no significant difference between approved and discontinued germline frequency in

VH domains (p=0.09, 30 degrees of freedom) or VL domain (p=0.08, 72 degrees of

freedom). There was a significant difference seen in the VH/VL pairings (p=0.00, 90

degrees of freedom) but none of the individual pairings were found to be significant

using the Bonferroni-Hochberg q value adjustment.

5.8.6 Post-Translational Modifications

Post translational modification sites were detected by scanning along the VH and

VL sequences of each antibody and recording at which positions a regular expres-

sion site corresponding to a recognition site was matched (see Section 2.3.4). The

results show little difference between the approved and discontinued data set for

the VH domains (Figure 5.16) and VL domains (Figure 5.17). None of the PTMs

at any positions showed a significant p-value when checked with χ2 test with the
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Figure 5.16: Approved and discontinued mAb VH PTM recognition sites by sequence posi-
tion. Frequency of post-translational modification recognition sites in market-
approved and discontinued antibodies for each position in the VH sequence
according to the Chothia numbering scheme.

Figure 5.17: Approved and discontinued mAb VL PTM recognition sites by sequence posi-
tion. Frequency of post-translational modification recognition sites in market-
approved and discontinued antibodies for each position in the VL sequence
according to the Chothia numbering scheme.

Bonferroni-Hochberg q value adjustment.

5.8.7 Hydrophobicity

Clusters were calculated using the ‘ClusterResidues’ programme (see Section 2.3.6)

using Chothia-numbered antibody sequences from AbNum and structural models

made by abYmod for all antibodies. For all mAbs, the number of different profiles
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Figure 5.18: Counts of different hydrophobic patch profiles observed between the approved
and discontinued antibody datasets.

Table 5.6: Most popular hydrophobic cluster profiles between market-approved and dis-
continued antibodies.

Rank Profile Number Approved Count (%) Discontinued Count (%) Clusters
1 0 59 (51.7%) 75 (51.7%) None
2 5 13 (11.4%) 28 (19.3%) Cluster 1: L106, L15, L83
3 3 5 (4.4%) 11 (7.6%) Cluster 1: H108, H89, H9

4 1 6 (5.3%) 5 (3.4%)
Cluster 1: H108, H89, H9
Cluster 2: L106, L15, L83

5 18 3 (2.6%) 6 (4.1%)
Cluster 1: H108, H89, H9
Cluster 2: L106, L15, L80, L83}

for hydrophobic patches was tallied, and counts of the frequency of each profile

(combinations of different clusters) were taken for the approved and discontinued

groups. In both groups, the most common profile was that there were no hydropho-

bic patches. The five most popular profiles are summarised in Table 5.6 showing

that the proportions of these profiles in the approved and discontinued groups are

similar. None of the differences in frequencies of hydrophobic patch profiles be-

tween approved and discontinued mAbs had a significant p-value when checked

with χ2 test.
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Figure 5.19: Counts of different unusual patch profiles observed between the approved and
discontinued antibody datasets.

Table 5.7: Most popular unusual residue cluster profiles between approved and discontin-
ued antibodies.

Rank Profile Number Approved Count (%) Discontinued Count (%) Clusters
1 2 76 (66.6%) 79 (54.5%) None
2 13 6 (5.3%) 6 (4.1%) Cluster 1: H54, H56, H57
3 26 4 (3.5%) 5 (3.4%) Cluster 1: L30A, L30B, L92, L93

4 15 2 (1.75%) 4 (2.8%)
Cluster 1: H61, L94, L95
Cluster 2: H98, L50, L53

5 30 4 (3.5%) 2 (1.4%)
Cluster 1: H100C, H95, H97
Cluster 2: L28, L30, L32, L92

5.8.8 Unusual Clusters

Clusters were calculated using the clusterresidues programme using Chothia-

numbered antibody sequences from AbNum and structural models made by abY-

mod for all antibodies. For all mAbs, the number of different profiles for un-

usual residue patches was tallied, and counts of the frequency of each profile were

taken for the approved and discontinued groups. The five most popular profiles are

summarised in Table 5.7. None of the differences in frequencies of unusual patch

profiles between approved and discontinued mAbs had a significant p-value when

checked with χ2 test.

5.8.9 Solvent Accessibility

abYmod was used to generate a structure of each market-approved mAb and dis-

continued mAb. Each structure was entered into pdbsolv, and a solvent accessibility

value was obtained for each residue. The residues were then numbered according
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to the Chothia scheme, and for each residue, the distributions of solvent accessibil-

ity for approved and discontinued antibodies were compared. Figure 5.20 demon-

strates the mean and standard deviation for all solvent accessibility values for each

residue. The nonparametric Mann-Whiteney test did not find significant differences

between the means of approved and discontinued reletive solvent accessibility val-

ues for most of the residues in the VH or VL sequences. Some individual positions

were shown to have significant (p < 0.05) differences between the approved and

discontinued groups for solvent accessibility: H58; H63; H85; L47; L62 and L65

(Figure 5.20). All of these positions are found in the Framework 3 region of the

VL sequence, except for L47, which is in CDR-L2. On inspection of the figure, it

seems that these may be artefacts of multiple testing, because in all cases, error bars

overlap. When this was corrected for multiple tests using the BH method, none of

these positions remained significantly different between groups.

5.9 Discussion

In order to predict which antibodies selected by the pipeline would be more likely

to pass clinical trials, the work in this chapter sought to train a predictor between

market-approved and discontinued mAbs taken from TheraSabDab [33] in order to

analyse characteristics that the model considered important for market approval.

A major limitation of the dataset is that the reasoning for discontinuation is

rarely disclosed by pharmaceutical companies. Although this can involve safety

aspects in immunogenicity, lack of efficacy, or other adverse effects, marketing rea-

sons can also play in this, as the stakes are so great when entering a drug into
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Figure 5.20: Approved and discontinued mAb solvent accessibility values. Values are
given for each residue of the Chothia VH and VL sequence numbering scheme
calculated by pdbsolv for market-approved and discontinued antibodies. * de-
notes significant difference between approved and discontinued groups (p <
0.05).

clinical trial. When the literature search to find reasons for discontinuation was

carried out, rather than finding scientific literature, the reporting was usually from

anecdotal press releases, citing efficacy reasons. The problem with this is that effi-

cacy is difficult to disentangle from poor bioavailablility, poor binding, potentially a

poorly understood target/pathway or poorly understood clinical endpoint [45]. Fur-

thermore, these reports cannot be wholly relied upon as pharmaceutical companies

may want to protect their reputations by claiming that a discontinuation was due to

marketing reasons, rather than admit to any safety or efficacy issues with a drug in

trials, so even here, this study assumes that the press releases are truthful. Despite

this, it was hoped that the collected samples would at least be enough to identify

criteria from which clinical antibodies could be identified.

No statistical differences were found in these properties of this grouping of
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approved and discontinued clinical mAbs, so it was interesting that the models were

able to achieve such good predictive performance. Generally, it was seen that these

groups had similar physicochemical property profiles, including thermostability and

isoelectric point, and therefore it was not possible to generate distinct classification

criteria based on these properties. This was extended to within-group frequencies of

post-translational modifications, hydrophobic patches and germline pairings, which

seemed the most surprising result, because it was hypothesised that discontinued

mAbs would show a higher frequency of these developability ‘red flags’ that would

have led to them being discontinued. However, this result is expected to be linked

to approved and discontinued datasets that have similar proportions of their most

popular VH and VL chain germline pairings. The result of this adds an additional

layer of bias to the dataset as the majority of these drugs come from the IGHV3 or

IGHV1 germline families.

Whilst intuitive, it has not been clearly stated before in the literature, but the

clinical dataset is already a selected dataset with antibodies that can be assumed to

meet the developability profiles necessary to be developed at scale, but do not all

have the characteristics to make it to market. Therefore, the developability charac-

teristics that have been previously identified in research are necessary to get to the

clinical stage but not sufficient to get a drug from clinical trials to market. Work in

this chapter was useful since these were the only examples available as true posi-

tives and true negatives, so was the best place to start to identify clinical antibodies

that could in fact pass trials.

What was interesting, however, was that using classifiers trained on amino acid
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encodings and protein LLM encodings could distinguish these two groups with high

performance with roughly equal prediction capability, which was markedly better

than predictions made with the residue level encodings, even when using all of the

methods concatenated together. This would indicate that amino acid compositions

and language models capture features that are linked to the drug becoming accepted

onto the market.

The feature selection via F-regression was found to have a vast improvement in

predictive performance in all cases where it was used, compared to the raw encod-

ings, which usually had poor performance most likely to overfitting to less informa-

tive features. To explain this, a number of reasons can be interrogated: firstly, the

language models have been trained on a selection of millions of sequences and so

have learnt important features of the antibody sequences that can in fact distinguish

these groups, unlike the residue level encodings, and secondly, the fact that these

models generate more dense encodings than residue level encodings, there is greater

probability of finding more features which are correlated with the two groups due

to chance to be learned from when feature selection is employed.

Potentially, there is a mixture of both of these reasons at play. From initial stud-

ies, it has been shown that these language models are heavily biased towards distinct

germlines [177] due to the biases in their training data, however, it was shown in

this chapter that approved and discontinued antibodies have similar frequencies of

the same germline gene families in their groups, most likely due to biases in candi-

date selection processes from biases in the repertoires of the antibody source. This

would indicate that this bias towards certain germlines is not what is causing the
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selection and that other characteristics relating to antibody effectiveness may make

a meaningful difference. These features include: poor binding affinity in vivo, off-

target effects or poor bioavailability due to low antibody titre from administration

route [45, 201], but it is unlikely that the language models themselves have an un-

derstanding of these characteristics. However, since this study failed to establish

the reasons for the discontinuation of all the discontinued antibodies, it is difficult

to draw meaningful conclusions from these encodings to understand these reasons

for the failure.

This chapter ends with a selected machine learning model that shows good

predictive performance with approved vs. discontinued antibodies, which is main-

tained with a held back dataset. It is not so surprising that the performance with the

held back dataset was not as strong as the training dataset as it can be expected that

these antibodies may be more diverse, or have different properties from the antibod-

ies in the training dataset. Furthermore, it is suspected the original model may be

somewhat overfitted as the best performance was seen when the positive example

probability threshold was increased to 0.8, however in our case, it is preferred that

the model would be more stringent and only select antibodies which it is confident

are positive examples from the learnt dataset.

5.10 Conclusions

This chapter concludes with the notion that clinical antibodies are part of a selected

dataset with similar developability properties that make them unsuitable to discover

triaging material. Dense encoding methods, like protein LLMs, can be used to
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train machine learning models in order to separate these groups with high degrees

of performance, however, the features that led to this performance could not be

identified. This would indicate the relationship here could be due to coincidence,

but a good prediction was also achieved with a held back dataset, indicating that

these models are still useful. To improve the interpretability of this model, it would

be important to know why certain mAbs were discontinued to try and relate these

features more clearly.



Chapter 6

Assembling the pipeline

6.1 Introduction

Throughout the preceding chapters of this thesis, an approach has been built to gen-

erate a triaging pipeline that will take a sample of paired human antibody sequences

and output those which satisfy developability features seen in the clinical dataset,

and are more likely to pass clinical trials.

This chapter will assemble the pipeline using the results of the previous chap-

ters. Firstly, by ordering physicochemical property triaging based on Z score filter-

ing of previously calculated properties; secondly the previously used kernel PCA

for unsupervised categorisation of repertoire data and clinical mAbs, and finally the

supervised labelling of antibodies more or less likely to pass clinical trials. A test

library of antibodies from Stewart et al. [121] was used to test the pipeline at dif-

ferent Z score parameters and measure how sensitive the pipeline is to mutations

relevant to mAb developability. Performance was compared with other developa-

bility screening software [110] and a selection of antibodies triaged out at different
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stages of the pipeline were expressed and experimentally measured for developabil-

ity properties.

6.2 Pipeline Outline

The pipeline takes a combination of approaches to triaging antibodies. Input an-

tibodies are triaged using physicochemical properties to remove antibodies with

properties that clearly fall outside of the ranges observed in the clinical dataset.

This reduces both the computation time for numbering and encoding, to select

higher-quality antibodies later in the pipeline. Antibodies are numbered accord-

ing to the Chothia Numbering Scheme [16], and missing residues are spaced out

using AbNum [112]. The spaced sequences are encoded with the AntiBERTy lan-

gauge model and then the sequences are entered into the machine learning part of

the pipeline. Firstly a filter using an unsupervised learning KPCA model ‘Layer 1’

to triage out antibodies which do not have similar properties to those observed in

clinical antibodies and then a Linear SVC binary classifier ‘Layer 2’ to select anti-

bodies which a supervised model predicts are more likely to be approved at clinical

trials. Using Z scores and probability thresholds, additional stringency can be added

at different steps.

Optional models trained on anti-drug antibody (ADA) incidence data to predict

immunogenicity above a threshold of 1% can be used if the clinical setting of the

antibody being developed demands this. Linear models predicting relevant devel-

opability properties trained on experimental data can also optionally be employed.

It is expected that there would be some triaging out of antibodies at each step of
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the pipeline, including spacing and encoding due to incompatible sequences which

the AntiBERTy model cannot encode. A pipeline schematic is shown in Figure 6.1.

6.3 Testing the Pipeline with a test dataset

The assembled pipeline was tested for its triaging effect in using a library of anti-

bodies from healthy human donors.

6.3.1 Pure2 Dataset

6.3.1.1 Library Preparation

The Pure2 B cell receptor (BCR) sequence resource was provided by the Franca

Fraternali Group at UCL. These datasets are an expansion of the library of three

healthy young blood donors published in Stewart et al. [121] with three additional

older blood donors. In all cases, blood donors had their B cells isolated and FACS-

sorted by developmental stage. The transcripts from each individual cell were bar-

coded and therefore VH and VL pairing is possible. Antibody VH and VL pairs were

taken as B cells that shared the same barcode where an IGH and IGL or IGK chain

was present. In cases where both IGL and IGK chains were present, the chain with

the highest count number was taken as the VL chain pair. No filtering based on

the type, or stage of development, of the BCR was performed for the purposes of

assembling this dataset. Individual sequences for the frameworks and CDR loops

were concatenated to give the full antibody Fv domain sequence. In total, 10,492

paired antibodies were extracted from the library in nucleotide format (Data File

12) which was then translated into amino acid format (Data File 13).
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Figure 6.1: Schematic of the antibody triaging pipeline from input to output. The yel-
low box indicates optional physicochemical feature triaging steps calculating
CDR-H3 length using AbNum [112]. Thermostability (∆G of unfolding) us-
ing the Oobatake Method [128] and pI using the IPC method [129]. The blue
box indicates machine learning elements including spacing and encoding, as
well as ‘Layer 1’ triage which is based on the Kernel PCA model for sepa-
rating antibodies with similar properties to clinical mAbs from the repertoire.
The selection of antibodies to take forward is made using the ellipse function.
‘Layer 2’ is the F-regression and supervised LinearSVC model trained to dis-
tinguish approved and discontinued clinical mAbs. The purple box indicates
optional physicochemical property prediction as done by linear models. * indi-
cates stages where stringency can be adjusted using Z score thresholds.
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Figure 6.2: Physicochemical properties of Pure2 dataset. a) Violin plots of physicochem-
ical properties of the Pure2 dataset and b) proportions of VH and VL germline
gene families and pairings.

6.3.1.2 Library Statistics

The Physicochemical properties of this library were examined (Figure 6.2). The

mean ∆G of these antibodies was 7944 and the majority of these antibodies had

non-negative values. The mean pI was 8.3 and the mean length of CDR-H3 was 13.

Approximately half of the heavy chains came from the IGHV3 VH domain germline

family, which was a higher proportion than that seen in the approved or discontinued

mAb dataset. Despite this, there was more variability in the VL domain germlines

and therefore more variability in the frequency pairing combinations. The most

frequent pairings all involved IGHV3.

As a comparison developability score the TAP score [117] was calculated for
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Figure 6.3: TAP scores assigned to Pure2 dataset. Histogram of TAP scores seen for 10,132
paired antibodies from the Pure2 Dataset.

each antibody from the Pure2 library. The TAP score is a developability score

where an antibody with values for the selected physicochemical properties that are

seen within the clinical mAb dataset is given a perfect score of 0. Antibodies with

increasing numbers of ‘red flags’ where the values are outside the range observed

in clinical mAbs are given negative scores. This is only a predictive indicator of de-

velopability and so the use of this score was only as a comparison, not a benchmark.

TAP scores were calculated for 10,132 of the paired VH and VL nucleotide sequences

from the Pure2 dataset in batches of 500 using the IGX platform 1 in August 2023

using the set of default penalties. Details of the statistics measured and penalties

assigned can be found in Raybould et al. [117].

The median TAP score for all the Pure2 antibodies was 0, suggesting that half

of these antibodies would have no developability red flags according to the TAP

score. Each successive negative score was seen less frequently until the most neg-

ative score, -110, which was observed for seven of these antibodies, indicating nu-

merous developability issues (Figure 6.3). For the antibodies from the Pure2 dataset

1https://igx.bio/

https://igx.bio/
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that could not be assigned a score, probably they could not be numbered, and this

suggests that they are unusual, and that there would also be developability problems

with these antibodies.

6.3.2 Training a model on the TAP score output

6.3.2.1 Binary Classifiers

As an exploratory experiment, it was investigated whether, using the AntiBERTy

[177] encodings, a binary classifier could be trained to predict that it would have

developability red flags (n=4971) or not (n=5123). These two groups were used to

train a series of 15 machine learning models with 10-fold CV, however, it appeared

that none of these models could effectively train on the input data with the best per-

formance (MCC= 0.15 ± 0.03) (Figure 6.4). Performance was not improved signif-

icantly by using F-regression feature selection, so it is possible that these groupings

are not different enough to allow models to distinguish groupings.

6.3.2.2 LLM Fine Tuning

Fine tuning using the LoRA method [203] was used to train a binary classifier for

the same sets of antibodies to test the same hypothesis. This would fine-tune the

AntiBERTy language model by adding more layers to the end of the model accord-

ing to the training data, to learn from these sequences with developability red flags.

It was also seen here that the model was not able to learn from the training data as

the MCC remained around 0, and raw accuracy remained around 0.5, meaning that

the predictions are not better than random chance. The loss functions observed in

training did not decrease much through successive epochs demonstrating that the
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Figure 6.4: Classifiers trained on Pure2 dataset TAP scores. MCC scores and standard
deviation of 15 binary machine learning predictors with 10-fold CV classifying
test split of human library antibodies with a negative and non-negative TAP
score. Error bars represent standard deviation.

models were not learning. What can be concluded from this is that the encodings of

the two groups were two similar so the features that the TAP score is searching for

are not represented in the encodings, such that antibodies with red flags were not

identifiable.

6.3.3 Evaluating the Pipeline

6.3.3.1 Physicochemical Property Triage

Using the mean and standard deviation of the properties taken from the market

approved antibodies, triaging criteria based on Z scores can be applied to a test

dataset to remove antibodies.
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Figure 6.5: LoRA language model fine-tuning demonstrating the a) MCC b) loss and c)
raw accuracy of different runs of the training (shown in different colours). In
cases where there is no movement across epochs, arrows have been added for
visibility.

Figure 6.6 demonstrates both the variance in thermostability, pI, and length

of CDR-H3 in the Pure2 dataset and the triaging effect these filters have on the

Pure2 dataset of human antibodies. It is easily identified that the values of ∆G

have the largest spread with respect to the approved dataset when compared to the

other properties (Figure 6.6a). The triaging based on ∆G had the greatest effect in

removing antibodies from the sample when based on the combined ∆G (VH∆G +

VL∆G), than the ∆G of either the VH or VL domains individually (Figure 6.6b). It

was also found that pI-based classification tended to remove antibodies with low pI
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Figure 6.6: Triaging the Pure2 dataset using physicochemical properties of clinical stage
mAbs. Violin plots of physicochemical properties: a) ∆G of unfolding (VH+VL),
b)∆G of unfolding (VH , VL ), c) isoelectric point and d) CDR-H3 length of
Pure2 dataset with various Z score filters applied, compared to the market ap-
proved dataset.

values from the dataset, however, because pI does not have a normal distribution,

the Z score cutoff loses more antibodies with low pI because it assumes a normal

distribution (Figure 6.6c). It was also surprising how strong an effect of the CDR-

H3 length triaging had on the resulting dataset size.

Because the triaging filter was set to triage based on the individual values of

VH+VL∆G, VH∆G and VL∆G separately, it had the largest effect on the triaging of the

antibodies at each stage. Like before, it seems that using many individual filters in

conjunction, a larger effect will be observed. This was shown to be the case when

measuring all of the predicted properties (VH+VL∆G, VH∆G and VL∆G separately, pI

and CDR-H3 length) were used to make one filter, and it was shown that the number

of antibodies remaining after any of the Z score filters was fewer than any of the



6.3. Testing the Pipeline with a test dataset 175

Table 6.1: Triaging effect of the filtering of the Z score filtering using ∆G, pI and CDR-H3
length together with different values of Z.

Z Score
None 2 1 0.5

Number of Antibodies 10492 8045 2740 386

individual filters (Table 6.1). By setting filtering criteria for all antibodies within

the range of 0.5 < Z < 0.5 for each metric, a large reduction in dataset size was

observed where only 386 antibodies remained. This effect was most likely due to

the small range observed for ∆G (Figure 6.6b) demonstrating that this approach was

not necessarily the best. For the sake of simplicity for this thesis, this approach was

used to demonstrate the pipeline, however, the full software would allow individual

Z scores triaging for each of these properties.

What has been shown in the above results is that there are some clear differ-

ences in the observed ranges of physicochemical properties of clinical and library

antibodies that allow triaging of antibodies that fall outside the range found in clini-

cal antibodies. What follows is the use of the unsupervised learning models trained

in previous chapters can be used in the pipeline (Layer 1).

6.3.3.2 Clinical vs. Library Triage

Three methods were tested to integrate the inputted Pure2 data set with the KPCA

model from Chapter 3.

6.3.3.3 Method 1

The first method was to use the trained PCA model with the OAS and clinical mAb

data and to transform the Pure2 data set using the model. The advantage of this
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method would be that any biases in the Pure2 dataset would not affect the clustering

as it is being done on a pre-trained model. This approach was unsuccessful and pro-

duced a plot in which the different groups of data were tightly condensed together

and did not overlap as seen in the other methods (Figure 6.7a).

6.3.3.4 Method 2

The second method was to fit a model to the OAS and clinical data, then train a new

model on the Pure2, and then to concatenate the results into one plot. This was an

improvement in the sense that the Pure2 antibodies conformed to the same grouping

pattern as seen when this model was trained (Figure 6.7b).

6.3.3.5 Method 3

The final method was to fit a model to the OAS, clinical data and the inputted

data together. The advantages of this approach is that the OAS library would pro-

vide a snapshot of the repertoire that the inputted antibodies would be mapped onto

and reduce bias in future clustering if the inputs were biased to a particular set of

germlines. However, this result would likely be the most computationally intensive

and may produce stochastic results with every run (Figure 6.7c).

Method 3 was chosen as the most robust, despite the increased compute time,

so that the dimensionality reduction would be applied in the same way for all an-

tibodies entered into the pipeline. Interestingly, however, when the plot produced

by Method 3 was coloured by the TAP score, there was no obvious pattern in the

clustering (Figure 6.8) . It was not seen, as expected, that the antibodies with the

most negative tap scores would be in the extremes of the principal components. In-
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Figure 6.7: Methods of adding new data existing PCA model. with Scatter plot of Kernel
PCA (KPCA) results (γ=500) of three different methods of joining together
pretrained KPCA model of OAS (blue) and clinical (yellow, orange, pink) data
and input Pure2 dataset (purple).

stead, what was found was that by using the physicochemical property filtering with

more stringent Z scores cut-offs, the proportion of antibodies with highly negative

TAP scores was removed. This would be an indicator that these physicochemical

property triaging is highly effective in removing antibodies with poor developabil-

ity. However, as stated, the TAP score is only a prediction of developability, and

not ground truth. In conclusion, it was observed that altering the Z score of the

ellipse function in Layer 1 affects the number of antibodies that are carried forward

to Layer 2 (Figure 6.9).

Using decreasing values for Z scores for the physicochemical feature triaging

the input sequences, drawing the ellipse function in Layer 1, reduces the number

of sequences retained (Table 6.2). Increasing the probability threshold required to

accept a positive prediction also decreases the number of antibodies that are output.
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Figure 6.8: Visualising kernel PCA by TAP score. Scatter plot of Kernel PCA results
(gamma=500) of three different methods of joining together pretrained PCA
model of OAS (blue) and clinical (yellow, orange, pink) data and input Pure2
dataset (purple).

6.3.3.6 Approved vs. Discontinued Triage

In cases where no physicochemical filtering was applied, the median TAP score

for each antibody output was -10, however, it was 0 in all cases where filtering

was applied. From the data, it appears that the fewest negative TAP scores are ob-

tained when the physicochemical filtering Z score is set to its most stringent setting

(Z=0.5). Generally, the minimum TAP score is not improved by changing the Layer

1 or Layer 2 stringency. This result is to be expected as the properties being filtered

on are similar to those used by the TAP score, and potentially, Layer 2 is trained on

an antibody’s chances to pass clinical trials, not directly on developability proper-

ties.
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Table 6.2: Number of antibodies from the Pure2 library output from the triaging pipeline
given different parameters of filtering.

Ph
ys

ic
oc

he
m

ic
al

Fi
lte

ri
ng

Z
Sc

or
e

N
o

Z
Sc

or
e

2
1

0.
5

L
ay

er
1

Z
Sc

or
e

L
ay

er
2

T
hr

es
ho

ld
PC

Fi
lte

ri
ng

L
ay

er
1

L
ay

er
2

M
in

TA
P

Sc
or

e
PC

Fi
lte

ri
ng

L
ay

er
1

L
ay

er
2

M
in

TA
P

Sc
or

e
PC

Fi
lte

ri
ng

L
ay

er
1

L
ay

er
2

M
in

TA
P

Sc
or

e
PC

Fi
lte

ri
ng

L
ay

er
1

L
ay

er
2

M
in

TA
P

Sc
or

e

N
o

Z
Sc

or
e

0.
5

10
49

2
98

75
35

87
-1

10
80

45
75

08
25

71
-1

10
27

40
23

59
80

8
-4

0
38

6
30

8
11

3
-4

0

0.
6

27
42

-1
10

19
24

-1
10

58
0

-4
0

86
-4

0

0.
7

18
94

-1
10

12
94

-1
10

36
3

-4
0

56
-4

0

0.
8

11
55

-1
10

77
2

-1
10

19
5

-4
0

29
-2

0

0.
9

44
9

-9
0

29
1

-1
10

67
-3

0
9

-2
0

2
0.

5
10

49
2

81
65

29
81

-1
10

80
45

73
33

25
14

-1
10

27
40

23
29

79
7

-4
0

38
6

23
1

80
-4

0

0.
6

22
63

-1
10

18
80

-1
10

57
1

-4
0

60
-4

0

0.
7

11
59

-1
10

12
68

-1
10

35
8

-4
0

40
-4

0

0.
8

95
9

-1
10

75
8

-1
10

19
3

-4
0

21
-2

0

0.
9

37
6

-9
0

28
3

-1
10

66
-3

0
7

-2
0

1
0.

5
10

49
2

81
86

29
78

-1
10

80
45

58
55

19
81

-1
10

27
40

20
56

70
5

-4
0

38
6

15
7

57
-3

0

0.
6

22
68

-1
10

14
82

-1
10

50
5

-4
0

47
-3

0

0.
7

15
64

-1
10

99
7

-1
10

31
9

-4
0

28
-3

0

0.
8

96
5

-1
10

59
2

-1
10

17
1

-4
0

16
-2

0

0.
9

37
1

-9
0

21
0

-9
0

60
-3

0
5

-2
0

0.
5

0.
5

10
49

2
61

07
22

32
-1

10
80

45
37

53
12

72
-9

0
27

40
10

86
36

1
-4

0
38

6
39

14
*

-2
0

0.
6

16
99

-1
10

95
8

-9
0

26
0

-4
0

13
-1

0

0.
7

11
87

-1
10

64
3

-9
0

16
8

-3
0

8
0

0.
8

72
9

-1
10

37
9

-9
0

83
-3

0
4

0

0.
9

28
1

-9
0

13
1

-9
0

26
-3

0
1

0



6.3. Testing the Pipeline with a test dataset 180

Figure 6.9: Ellipse function to select closely clustered clinical antibodies. Scatter plot of
Kernel PCA results (γ=500) (blue), Pure2 (purple) and clinical (yellow, orange,
pink) data and input Pure2 dataset (purple) with ellipse function drawn in red
for a given number of Z scores.

6.3.4 Physicochemical Property Prediction

6.3.4.1 Immunogenicity

It was expected that the vast majority of these antibodies would not be predicted to

be immunogenic because they are all human-derived. In this case, it was surpris-

ing that the binary immunogenicity predictor model predicted that 8105 antibodies

would have ADA incidence >1% and 2340 antibodies below. This would imply

that the model is overly sensitive, may reflect the balance of the training data, or

that it has been trained on clinical mAbs which look different from the repertoire.
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Table 6.3: Median values of developability properties predicted by linear models trained
on experimental data.

Property Tm (Negated) HIC-RT CIC DNP Fe.FVIII.2 Fe.C3.2 Fe.LysM.2
Pure2 Predicted Values -69.3 ± 4.32 10.2 ± 0.62 9.4± 0.5 0.6±0.3 2.8 ± 0.7 2.5 ± 0.7 4.5 ± 0.8
Top 14 (*) Predicted Values -71.6 ± 3.3 10.0 ± 0.5 9.5 ± 0.5 0.5 ±0.2 3.2 ± 0.6 2.6 ± 0.7 4.6 ± 0.8
Clinical Experimental Values -71.0 ± 5.82 9.9 ± 1.23 8.9 ±0.8 0.25 ±0.8 3.3 ± 1.7 2.6 ± 1.4 5.0 ± 2.1

A similar case, where the majority of antibodies were predicted as being immuno-

genic, was seen for the 14 antibodies which were output by the model with its most

stringent parameters (marked * in Table 6.2) where 11 were marked as immuno-

genic and 3 were predicted as non-immunogenic, demonstrating a similar ratio of

immunogenic to non-immunogenic antibodies.

6.3.5 Predicting Developability Properties of a Test Dataset

It was seen that there was low variance in the linear model predictions of the de-

velopability properties trained on the data by Jain et al. [102, 103]. However, when

comparing this data with the predicted data of the input antibodies from the Pure2

dataset, it was found that the Pure2 data overall had lower median stability and

higher median hydrophobicity, but not polyreactivity when binding to iron with

Complement (C3). In contrast, the top 14 antibodies showed overall higher stability

than the rest of the Pure2 dataset, but without large changes in hydrophobicity or

polyreactivity. This is not surprising since these features are not identified or triaged

on by the pipeline. Overall, this result demonstrates that antibodies outputted from

the pipeline ∆G was more aligned to clinical mAbs, which supports the idea that the

pipeline identifies antibodies with properties similar to clinical mAbs.
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6.4 Evaluating the Sensitivity of the Pipeline to Mu-

tations

Another test for this pipeline would be to evaluate its sensitivity to point mutations

in the sequence that are relevant to the pharmaceutical pipeline, where a given se-

quence may have point mutations introduced to optimise binding or remove liabili-

ties. A series of experiments was carried out. In each experiment, a procedure was

performed to remove sequence liabilities in which mutated sequences were substi-

tuted into the dataset, so that for each run of the pipeline 10,492 antibodies were

input, but some with edited sequences. For each procedure, it was hypothesised

that a greater number of antibodies from the mutated dataset would pass through

the pipeline than from the original Pure2 dataset if the pipeline was left with default

parameters.

6.4.0.1 Mutating Deamidation Sites

Asparagine deamidation sites can affect protein structural properties linked to a

myriad of antibody immunogenicity problems [99], and are therefore undesirable

in therapeutic antibodies. The antibodies in the Pure2 dataset were aligned with the

Chothia numbering scheme and where an asparagine residue (N) was present, if the

surface accessibility (%) determined by pdbsolv was over 80%, N residues were

substituted for a glutamine (Q) as a neutral substitution. 10206 antibodies were

edited.
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6.4.0.2 Mutating Surface Methionines

Methionine oxidation sites can also affect antibody-antigen binding through

changed structural properties [100]. Antibodies in the Pure2 dataset were aligned

to the Chothia numbering scheme and where a methionine (M) residue was

present, if surface accessibility (%) as determined by pdbsolv was over 20%, M

residues were substituted for whichever residue was given at that position as the

most frequent through the consensus data from abYsis [112]. As a result, 3125

antibodies were edited.

6.4.0.3 Mutating N-linked Glycosylation Sites

N-linked glycosylation sites can increase the risk of antibody immunogenicity or

heterogeneity [97]. This motif was searched for in antibodies of the Pure2 dataset

using regular expressions to locate instances of “NX[S/T]X” (where X is not P). In

cases where it was found, N was mutated to Q. 1410 antibodies were edited and

entered into the pipeline as before.

6.4.0.4 Results

Results show that there was an increase in antibodies outputted from the final

pipeline when the deamidation and glycosylation sites were removed, but not for

oxidation (Table 6.4). This effect is also seen in the unsupervised learning compo-

nent (‘Layer 1’), suggesting more clustering of antibodies in the centre of the KPCA

when these changes were made. Overall, this was interesting because the removal of

the deamidation sites changed nearly all antibodies in the Pure2 dataset, and remov-

ing glycosylation sites only changed around 10% of the dataset, yet more antibodies
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were retained in this. It could be argued that, in the case of deamidation sites being

removed, the number of output antibodies does not seem to reflect the number of

antibodies changed. However, removing oxidation sites appeared to affect 30% of

the dataset, yet the output is decreased by 747 than in the Pure2 dataset. It was

thought that this could be due to the removal of conserved methionine residues or

that these antibodies have additional liabilities, as seen in the chapter comparing ap-

proved and discontinued antibodies, which may result in encodings that look very

different from the unedited antibodies.

6.5 Evaluating the Sensitivity of the Pipeline to Mu-

tations in CDR-H3 Regions

This procedure was repeated in which only instances of post-translational modifica-

tion sites within the CDR-H3 sequence were edited (Table 6.5). The rationale was

to overcome the effect of removing conserved residues and only target the areas that

are thought to affect binding the most. In the case of oxidation sites being removed,

it was seen that the number of antibodies output had increased from the previous

experiment, but for glycosylations and deamidations there were fewer antibodies in

the outputs than in the previous experiment, despite fewer edits being made in this

experiment. This was a surprising result, demonstrating that these point mutations

can influence the output of the pipeline, but to investigate how, the proportions of

the output that were edited were measured.

With the exception of the deamidation sites being removed, the edited se-

quences made up small proportions of the output of the pipeline, potentially demon-
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Table 6.4: Counts of antibodies (n=10,492) output from the pipeline following removal of
post-translational modification sites.

Stage Pure2 Oxidation Glycosylation Deamidation
Edits 0 3125 1410 10206
PCfiltering 8085 7671 8073 7995
Level1 6689 4543 7153 7095
Level2 2284 1537 2595 2708
Edits Out 521 302 2625

Table 6.5: Counts of antibodies (n=10,492) output from the pipeline following removal of
post-translational modification sites in only CDR-H3 loops.

Pure2 Oxidation Glycosylation Deamidation
Edits 0 357 106 755
PC Filtering 8085 7759 7770 7771
Level 1 6689 6060 5788 5003
Level 2 2284 2110 2011 1708
Edits Out 70 24 119

strating that the models are not trained on these sequences with point mutations

and that these are different enough to be reflected in the encodings. Overall, this

illustrated that removing post-translational modification sites may make a given se-

quence more liable to be triaged out of the pipeline because the models expect the

sequences to have them, and so editing these sites should be done after the pipeline

has outputted a selection.

6.6 Expressing Representative Examples from the

Pipeline

To truly assess how real these predictions are, it was decided to express a small

number of representative antibodies from the Pure2 dataset. The antibodies to be

expressed were selected from each part of the pipeline and tested in a laboratory

setting for thermostability (Tm), hydrophobicity (HIC) and aggregation (Tagg).
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6.6.0.1 Sample Selection

Firstly, it was decided that an antibody that would have been removed in the predic-

tion of physicochemical properties should be tested. A representative was chosen

which also happened to cluster closely with the centre of the KPCA, challenging

the idea that antibodies positioned at the origin of the KPCA have good developable

properties. If the antibody was shown to have poor properties under experimental

conditions, this would defend the need for this early triaging step. Secondly, it was

necessary to test the hypothesis that the KPCA plots were a suitable measure of

developability, so antibodies from the extremes of PC1 and PC2 were selected to be

expressed. It would be hypothesised that these would have poor developability fea-

tures because they are located away from clinical antibodies and would have been

triaged out at this stage of selection.

Antibodies were selected from their position in the KPCA. Firstly, if antibodies

from the extremes of the PC turn out to be developable (A, B), it will challenge the

assumption that being closer to the clinical antibodies means better developability

characteristics, and will potentially mean similar germlines used. Similarly, using

antibodies which the model predicts to be good (D) and bad (E) antibodies which

are towards the origin of the cross plot to additionally challenge this assumption.

Furthermore, this experimental validation aims to test the linear models by select-

ing the antibody with the highest predicted Tm (C). The positions of the selected

antibodies from the KPCA are shown in Figure 6.10 and details of their predicted

properties are given in Table 6.6.
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Figure 6.10: Selecting representative examples for expression. Scatter plot of kernel PCA
Result (γ=500, kernel=rbf) of Pure2 dataset with highlighted antibodies con-
sidered for expression.

Table 6.6: Details of antibodies chosen for expression and predicted physicochemical
properties.

Label Identifier Tm(Negated) HIC-HPCL RT CIC DNP Fe.FVIII.2 Fe.C3.2 Fe.LysM.2 BVP ELISA ACSINS Immunogenicity
A ACGAGGATCGCATGAT -73.75 10.5 9.8 0.7 2.7 1.4 4.7 5.0 3.9 7.4 1
B ACGAGCCCAAGCGCTC -68.1 10.4 9.2 1.0 3.8 4.3 5.0 3.7 2.8 8.6 1
C CCTACCAGTATGAAAC -82.1 9.9 8.7 -0.2 4.0 2.71 5.8 1.4 0.7 -5.0 1
D CTAGTGAGTAGAGTGC -71.4 11.3 10.0 0.5 3.1 3.0 4.5 4.8 0.9 8.8 1
E TGCGCAGGTTTGTTTC -59.3 10.6 10.0 1.3 3.4 2.9 4.2 5.0 1.0 7.2 1

6.6.0.2 Results of Experimental Validation

Antibody expression and developability tests were performed by GenScriptBio. The

method of expression and experimental protocols are described in Appendix C. The

performance of the test for the five antibodies is given in Table 6.7. The degree

Table 6.7: Developability assay performance of selected antibodies.

Label Reasoning HIC-HPLC RT(min) Tm (°C) Tagg (°C)
A Most extreme (PC2) 28.1 70.8 72.1
B Most extreme (PC1) 27.7 70.5 63.1
C Highest predicted Tm 26.6 68.1 59.3
D Finalist Antibody Proximal to Origin 32.3 68.7 67.2
E Triaged Antibody Proximal to Origin 28.3 74.8 65.1
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of correlation between experimental and predicted values for Tm and HIC as given

in Table 6.6 using Spearman’s rank correlation (ρ). Rank correlation was used

over correlation coefficient to remove the effect of the difference in absolute values

between experimental set-ups, and because of the small dataset. A near-perfect

rank correlation was found for the predicted HPLC-HIC RT (ρ = 0.97) but a poor

correlation was found for the Tm (ρ = -0.88) compared to the experimental results

here. Both predictions for HIC and Tm were made using linear models trained on

experimental data [102]. Jain et al. [102] did not take the Tagg measurement, so

there is no direct prediction to compare against. Despite this, a strong correlation

was found between the experimental values of Tagg and the predicted values for

Cross-Interaction Chromatography using models trained from the Jain data, which

another measure of aggregation or self-interaction (ρ = 0.80).

The results from the experimental procedures demonstrated that the finalist an-

tibody (D) showed a high Tagg but also the highest HPLC-HIC RT of all of the an-

tibodies selected. In contrast, the antibody triaged in the early pipeline (E) showed

the highest Tm and the shortest HPLC-HIC RT, which seems counterintuitive. Fur-

thermore, antibody which had the highest predicted Tm from the Pure2 dataset (C),

was found to have the lowest experimental Tm and the lowest Tagg. The antibodies

at the extremes of the PCs (A & B) were found to be in the middle for most of

the experimental values, except for antibody A which has the highest Tagg. Both

antibodies have higher experimental Tm antibody D.
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6.7 Discussion

The construction of the pipeline was decided on the basis of the results discovered

throughout this thesis for separating clinical antibodies from library using encodings

from the AntiBERTy language model.

The Pure2 library was made available to the author by the Franca Fraternali’s

group as a representative dataset to be used on the pipeline. The dataset was made

up of antibodies from healthy young and old individuals, keeping this test agnostic

of any known target and potentially eliminating biases of over-representing anti-

bodies for a specific antigen. However, the intended application of this pipeline

would be used in libraries where a large proportion of antibody would be expected

to bind to a given antigen, such as immunisation campaigns. The differences be-

tween Pure2 and clinical antibodies especially apparent when different proportions

of different heavy and light chain pairings were observed in the Pure2 dataset than

in the clinical approved and discontinued mAb dataset as used in Chapter 3, but this

does make sense as it has come to be shown that clinical mAbs are a highly selected

group. With this in mind, it was surprising that more than half of the Pure2 antibod-

ies received no red flags for developability by the TAP score software, suggesting

that most of these antibodies sit within the ranges of the selected physicochemical

properties observed in the clinical dataset. However, calculating these scores did

require 60 hours of computation time to complete the dataset, and it begs the ques-

tion how to select the best antibodies if there is no other means of differentiating the

antibodies.

In terms of physicochemical filtering, the observation that setting filter triaging
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based on ∆G had more filtering effect is due to the repertoire used having a greater

variance of ∆G values compared to the marketed antibodies than for any of the

other properties that were checked, however, this method also removes antibodies

with larger ∆G values than seen in the approved antibodies, which would in princi-

pal have greater stability and unlikely to be discarded in other selection pipelines.

However, in defence of this approach, other developabilty detection software also

focuses on identifying antibodies with traits similar to the currently approved anti-

bodies will also triage out antibodies with perceived positive traits where the value

is above what is observed in the clinical antibody dataset [110, 107]. Perhaps, it

would have potentially been better to have treated the two chains as a “weakest

link” problem, and filtered based on the chain with the furthest deviation from the

mean, however, the approach taken in here aimed to be hollistic, and to take into

account the relationship between both VH and VL chain.

What was more surprising was the large synergistic effect of all these filters

combining to reduce the sample size from 10,492 to 386 when the Z score was set

to 0.5, a 96% reduction in the size of the data set. Arguably this kind of strin-

gency makes the result of large libraries more manageable to work with to do more

computationally intensive tests, such as software which requires modelling, or even

making use of the TAP software. As has been shown given the overlap between

approved and discontinued antibodies, it is inevitable that this sample will still have

antibodies that are likely to fail clinical trials, even if they have developable traits,

and so additional triaging would be needed. Furthermore, it was surprising that only

one antibody remained out of 10,432 when all pipeline parameters were set to their
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highest stringency, which is why the 14 top antibodies of this setting were chosen

to select from for experimental testing, although it would have been interesting to

have tested this one too. Although the TAP score was used only as a comparison for

the pipeline developed here, it was reassuring to see that there was agreement when

more stringent parameters were used to triage antibodies out of the Pure2 dataset.

More stringent parameters demonstrated that the minimum TAP score observed for

the antibodies in that output was less negative. This was mostly observed when

smaller Z scores for physicochemical property filtering were selected, rather than

when the ellipse function or the clinical trials model probability function was se-

lected. This was to be expected, as the phyicochemical property triage would be

working to remove antibodies with developability red flags that were more similar

than those of the other models.

The pipeline was evaluated for its sensitivity to mutations usually employed to

remove deleterious post-translational modification sites. It was surprising that re-

moving deamidation sites edited so many antibodies and only gave a small increase

in the number of antibodies output from pipeline, whereas removing methionine

oxidation sites caused a reduction output antibodies. Furthermore, removing the

sites from only CDR-H3 loops only caused a marginal difference in the number

of antibodies out, in each case, it was a small proportion of the antibodies which

were edited. This has suggested that while the pipeline is sensitive to mutations,

it may not be in the way that would be expected. When they are mutated out, the

encodings must change significantly enough that this changes how the fate of an

antibody would be predicted at clinical trials, or whether it is a repertoire or clinical
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sequence.

The predicted immunogenicity of the antibodies was surprising as it was ex-

pected that the majority would be considered non-immunogenic, however it appears

the model trained was probably overly sensitive and predicted the majority would

be immunogenic. This suggests that the ADA dataset used to train this model was

not suitable for one or of for the following reasons: It was made up of clinical mAbs

which have been shown to be a selected dataset which may not translate to library

antibodies; clinical mAbs used in the dataset have a number of different sources and

possibly the model is biased to the training dataset and giving rough proportions of

outputs as it received for inputs. For this reason, the immunogenicity model was

considered untrustworthy.

Although the budget for this experiment only allowed for 5 antibodies to be

expressed, it was attempted to select antibodies that would test multiple hypotheses,

rather than selecting 5 antibodies from the Pure2 dataset that were passed through

the model. For this reason, it was thought that testing antibodies in the extremities

and the origins of the KPCA plot of Pure2 antibodies, the OAS dataset and clinical

antibodies to explore if developability features were being selected. This led to

the selection of antibodies based on their position within the KPCA, regardless of

their predicted physicochemical properties, as it was unclear at this point if these

predictions were reliable.

It was reassuring that while the absolute values demonstrated differences that

could be accounted for by the experimental setup, there was a strong rank correla-

tion between the predicted and experimental values for HIC in the selected antibod-
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ies, which strengthens the reliability of this predictor as a relative indicator of HIC.

This was not the case for the Tm predictor, suggesting an element of overfitting

in the predictive model. An explanation for this effect could be that impurities or

different compositions in the samples from the Jain et al. data affected the recorded

melting temperature in this dataset but not hydrophobicity [197]. Thus, making the

results from these experiments less reproducibile using models trained on their data

and applied to the antibodies used in this thesis.

Another explanation, though more speculative, is that in experimental pro-

cedures for Tm and Tagg are measured, the antibodies were seen to melt, or to

aggregate at temperatures which would not be physiologically relevant (e.g 68°C-

74.8°C). This is counter to a hydrophobic antibody, which would would have an

effect at physiologically relevant temperatures. Therefore, there would be no evo-

lutionary selection against proteins which unfold at this temperature range, and are

tolerated as long as they are stable within physiologically relevant temperatures (i.e.

body temperature). This would mean that it is impossible for the LLMs to learn to

predict Tm or Tagg because it is out of context from the sequences that it has been

presented, whereas analogous information has been encoded by the LLMs that can

be used to predict HIC.

Although it appears that the antibody chosen to represent the output of the

pipeline at its most stringent parameters had poorer developability experimental

values of all of the other selected antibodies, this was not seen as a problem, as this

antibody also had the highest predicted HIC of all of the other outputted antibodies

at these model parameters. From this it could be assumed that an output antibody
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with a low predicted HIC would reflect the truth, and that had HIC filtering also been

used, this antibody would have been rejected. From this, it is reasonable to suggest

that when using this pipeline, optional cut-off points for predicted developability

values, particularly HIC, would be an additional useful step to triage out antibodies

with poor developability.

This raises questions about why an antibody output by the model would still

have poor developability features. An obvious hypothesis is that these 14 out-

put antibodies with the pipeline’s highest stringency parameters conform to the

germline biases seen in the approved and discontinued dataset. This was in-

vestigated but it was seen that while most of these came from IGHV3/IGKV1

(n=5) and IGHV3/IGKV3 (n=4) pairings, antibodies from IGHV3/IGKV4 (n= 2),

IGHV1/IGLV2 (n=2) and IGHV4/IGKV6 (n=1) pairings were also represented,

suggesting that a feature other than germline gene pairings has been selected. How-

ever, it would be advised not to use the pipeline at its highest parameter stringency

for fear of removing useful sequences, and potentially over-parameterising can lead

to selecting antibodies which conform to another bias which has not been identified

in this thesis.

What can be concluded from laboratory experimentation is that antibodies with

developable properties can be found throughout the KPCA space and are not neces-

sarily proximal to the origin, which raises the question of why this seems to be the

case for the clinical antibodies used in this study. This could be because of biases in

the language model that have caused them to cluster this way, and a germline bias

still persists.
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6.8 Conclusion

To conclude, it has been shown that the pipeline assembled from the models trained

in previous chapters of this thesis can be used to select antibodies from a test li-

brary of repertoire BCR sequences that are predicted to have characteristics similar

to current clinical mAbs. By setting more stringent values for the parameters of the

models used, it is argued that a better quality output can be obtained, which is sup-

ported by the comparison with the TAP score. Furthermore while the experimental

work has supported the relative predictions made by models trained on experimental

libraries, it has also demonstrated that in silico predictions are not yet replacements

for the experimental work necessary to demonstrate an antibody’s success in the

clinic.



Chapter 7

A New Annotation Language and

Interactive software for Multispecific

Antibodies

The work presented in this chapter has been published in Sweet-Jones, et al.

(2022) Antibody markup language (AbML) - a notation language for antibody-

based drug formats and software for creating and rendering AbML (abYdraw).

mAbs 14:e2101183.

7.1 Introduction

Multi-specific antibodies (MsAbs) are an up-and-coming class of biologic drugs

aimed at building on the success of mAbs in the clinic. These therapeutics require

molecular engineering techniques to graft multiple Fv fragments onto one structure

that can bring together two cells, a signaling molecule to a cell, or enhance a step in

a drug pathway [78, 79]. This can be done using a number of genetic and chemical
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methods, which have generated a host of unique MsAb formats that have become

recognised by the WHO-INN. The MsAb formats which have reached market ap-

proval by governing bodies at the time of writing: Emicizumab; Blinatumomab

and Catumaxomab, are all bispecific (binding to two different epitopes). However,

trispecific and tetraspecific antibodies have also been developed, which are of great

interest in cancer immunomodulatory therapies.

The growing diversity of these molecules and their increasing entry into clin-

ical trials have demonstrated a need to encourage users of antibody discovery

pipelines to adopt a machine-readable standardised description of these formats in

this thesis to engage in MsAb engineering. The development of an annotation lan-

guage that could address the shortcomings of previously used annotation methods,

including HELM [93], was thought necessary. As previously described, HELM

has a number of shortfalls when annotating MsAbs, including the inability to no-

tate specificities of different Fvs, the requirement to provide sequence data for the

therapetic and an overly complex editor.

In this chapter of the thesis, the author presents a new antibody annotation

language, Antibody Markup Language (AbML), is presented. This is designed to

encourage users of the antibody discovery pipeline to explore bispecific antibody

engineering by addressing the needs of the antibody community to describe these

formats.
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7.2 Development of Antibody Markup Language

(AbML)

Work outlined in this section ‘Development of Antibody Markup Language (AbML)’

was originally done by Maham Ahmed with Andrew Martin as part of the MSc

Bioinformatics Titled ‘Describing the Format of Antibody Based Drugs’ (submitted

in 2020). The contributions made by James Sweet-Jones are listed below:

• Naming AbML was done by Andrew Martin and James Sweet-Jones.

• Additions of TCR domains to AbML after request from reviewers.

• Sequentially numbering domains. This was done to make rendering images

more convenient and logical.

• Chemically bonded linker domains (-C-) after reading the work of Szijj et al.

[88].

• Removing whitespace in AbML expressions to avoid confusion in readability.

• Positioning heavy chains first, and light chains and antibody fragments to the

end of AbML expressions for convenience in rendering images.

• Allow ASEQ and DSEQ expressions if a specified sequence is provided after

request from reviewers.

• Specifying which domains may be compatibly paired for the convenience of

drawing schematics.
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• CLASS comment to specify which immunoglobulin class a domain originates

after reading the work from Heinke et al. [204].

• Development of the abYdraw software to draw and render AbML descriptors

AbML was designed to have a structure similar to HELM [93], but adapted for

MsAbs using Ig-like and TCR-like domains. For example, HELM would require

one to specify a constant heavy (‘CH’) domain and add a comment to specify which

CH type it is (CH1, CH2, etc.). To simplify this, AbML adopts separate domain types

(‘CH1’, ‘CH2’, etc.). With these ideas in mind, the requirements for AbML were

devised as follows:

• The language needed to be simple to encourage its use.

• It needed to be sufficiently flexible to describe all current MsAb formats and

all those that could be envisioned in future.

• In addition to standard antibody domains, it needed to be able to describe

modified domains (e.g. knobs-into-holes), non-antibody domains, and chem-

ical conjugation.

• Interactions between domains and (multiple) disulfide bonds linking domains

needed to be described.

• The specificity of different VH/VL domains needed to be indicated.

• Three types of connection between domains needed to be allowed: normal

peptide connections between domains, natural (or engineered) hinge regions

and artificial (engineered) peptide linkers.
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• AbML needed to support additional optional comments including general

notes, types of additional domains, modifications and region lengths.

AbML is based on the description of a chain of antibody domains, separated

by connectors, from the N-terminus to the C-terminus in a plain text string. The

aim is to provide as simple a format as possible while conveying all necessary in-

formation and allowing users to specify additional information such as sequences

and modifications.

Each domain is numbered sequentially in order of its appearance in the ex-

pression. In this respect, hinges and artificial linkers can be considered more like

domains, as they are numbered and separated from neighbouring domains with a

‘-’ character, which represents naturally occurring linkers. Whitespace, including

line breaks, is ignored in AbML except for comments given in square brackets.

Antibody chains are separated by ‘|’ characters. Chains that are part of the anti-

body molecule can be presented in any order, but any additional chains that interact

with antibody chains via a disulphide or a domain pairing with a domain conjugated

to the antibody) are placed last. In a multi-chain structure, every chain must have

at least one domain that interacts with a domain on a different chain, and pairings

may only be between compatible domains. These are specified VH/VL, CH1/CL,

CH2/CH2, CH3/CH3, CH4/CH4, CH5/CH5, L/L, X/X, VA/VB, CA/CB, VG/VD,

CG/CD. The properties of the language for Ig-like domains are shown in Figure

7.1 with full specifications provided with the publication [205].
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Figure 7.1: Building AbML expressions for an antibody structure from domains to chains.
a) Each domain is an individual unit containing information about the domain
type, modifications and interactions with other domains. Order of information
is shown through the largeprint domain text colour-coded to above tables of
all possible entries. b) Chains are made up of a group of domains conjugated
by a selection of linkers. The numbered schematic and AbML schematic of
the bispecific knobs in holes (KIH) MsAb demonstrates how its correspond-
ing expression below is constructed for each chain from the N-terminus to C-
terminus. Blue and Pink colouring represent different antibody specificities.
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7.3 Development of abYdraw

It was suggested by Ahmed in the discussion of her thesis that a graphical edi-

tor for the antibody annotation language would be a good tool to promote it, so

this work was also carried out as part of this thesis. It was to be called abYdraw

to follow the naming convention of other software released from Andrew Martin’s

group, and while it was initially developed only to render AbML strings as images, it

was extended so that point-and-click actions and assembling schematics of MsAbs

could then produce the AbML string. abYdraw was implemented in Python3 us-

ing TKinter to design the interface, which is presented in Figure 7.2. However, a

command-line interface allowing abYdraw to be used for automatically rendering

AbML strings was written to preempt a time where it would be useful to generate

images on the fly in web pages.

7.3.1 Drawing MsAb formats from AbML expressions

Users may enter a valid AbML expression in the text box highlighted in the

schematic to obtain a schematic of their designed antibody by clicking the

‘Get Structure’ button. Originally, it was planned to include the AbML

checker developed by Ahmed as part of this pipeline, but this was not found to

work when the specifications of the language were changed (Algorithm 3).

The ‘Domainmaker’ function was written to calculate the coordinates of a

given domain given the centre of the apical edge of the domain. Each domain was

drawn as a rectangle with the short edges being 40 pixels across and the long edges

80 pixels tall. If the domain is drawn before the hinge, these were drawn at a slant
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Algorithm 3: abYdraw method drawing MsAb formats from AbML ex-
pressions.

• Identify the number of chains and check for AbML errors.

– An unrecognised domain type that is not allowed is entered in the
AbML expression

– A domain is missing its numbering, shares its number with another
domain or is paired with a domain that does not exist

– A domain with incompatible modifications (both positive and negative
charges, both knob and hole mutations) has been entered

if Error in AbML then
Raise Error

else

• Loop through each chain to identify which domains interact with a domain
on another chain. This performs pairing. Using the information about where
these interactions are, the software decides where the C-terminus domain of
each chain should be drawn. This is given as a set of coordinates in 2D
space.

• Starting with the lowest number domain on the C-terminus of the first chain,
the software loops through each domain and connecting bonds of the AbML
and decides: what the domain should look like; what colour it should be;
what the label should be using the information given in the string.
Furthermore, the location of where the domain will start is calculated, and
this most likely depends on what domains come before or after it. For
instance, if the current domain is paired with the previous domain, it will be
drawn adjacent to it, if not, it will be drawn below it. Bonds are drawn from
the centre of the basal edge of one domain to the center of the apical edge of
the next.

• The step of calculating the coordinates for each domain is done using the
DomainMaker function, which takes into account all of this information and
realises the coordinates of each vertex of that domain. These coordinates,
alongside a suitable domain label containing any modifications, interaction
information and bonding information are saved in a domain object.

• Once all of the domains in each chain have had their coordinates saved in an
object, these coordinates are first checked for any clashing domains, and if
this is the case, they are spaced accordingly so they do not overlap. Then,
they are rendered and filled with an appropriate colour based on which
antigen binding specificities are on that chain. Any domain modification
notes are written alongside the MsAb figure.

end
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Figure 7.2: abYdraw interface. a) Domain palette which has buttons necessary for drawing
antibody domains. b) Library of commonly used antibody AbML expressions.
c) Textbox for inputting AbML expressions and receiving output AbML ex-
pressions.. d) Button pad that will render antibody schematics or output AbML
to the textbox. e) Canvas for drawing and rendering antibody schematics. f) un-
derneath there are two buttons which are involved in exporting the schematic.

where the coordinates were calculated using trigonometry.

7.3.2 Generating AbML Expressions from Drawings

The user is also able to draw antibodies by using the palate to select a domain,

any specificities and modifications, and clicking the canvas to place the domain.

The domain object is then written with those coordinates and modifications. These

domains can be moved using a click-and-drag method or edited by selecting a mod-

ification and clicking the desired domain, and the data stored in that object are

edited accordingly. Bonds can also be drawn between domains using a click-and-

drag method, ensuring that the bond starts and ends inside two different domains in

a N-terminus to C-terminus direction. Bonds are also saved as objects, but can be
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natural connectors, hinges, or engineered linkers. Domains can be paired by placing

compatibly paired domains adjacent to each other, which for VH and VL domains,

may require using the right click to reverse the orientation of the domains so that

they interact to form a complete antigen binding site. Furthermore, a library of pop-

ular structures is included which can be easily loaded onto the canvas and can then

be edited.

Users may draw antibody-based drugs from scratch or begin with a template

design of common formats (including MsAbs) that may be manipulated by the user.

Normal connections between each domain are given by black lines that are drawn

from the bottom of one domain to the top of the next domain.By default, artificial

linkers are shown as purple lines, disulphide bonds are shown as red lines and hinges

are shown in dark green. These default colours for all domain and bond types may

be changed in the settings menu. Variable domains appear with a cutout at the top

of the domain referring to their antigen-combining site, which pairs with another

to give a complete Fv fragment. Nanobody domains (i.e. a VH domain that does

not interact with anything else and indicated as VHH) have a unique domain shape

reflecting their single-domain binding site.

KIH adaptations are displayed in constant domains with either a cut-out or an

extension to their side, which slots together to demonstrate how these domains are

paired. By default, domains are coloured according to their specificity descriptor.

Consequently, it is possible that chains will have blocks of different colours when

domains of different specificities are given in the same chain. Disulphide bonds

can be drawn starting from either of the interacting domains (including linkers and
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hinges). To insert a comment (e.g. NOTE), the appropriate comment type button is

clicked and, in the case of TYPE and MOD which have restricted allowed values,

the required value is selected from a drop-down list. If the desired comment is not

available, comment text is typed into the text entry box and the required domain is

clicked to associate the comment with that domain. AbML also allows sequence

information to be associated with each domain or chain using ASEQ and DSEQ

keywords for amino acid and nucleotide sequences, respectively. Once the drawing

is arranged, by using the ‘Get AbML’ button, the appropriate AbML expression

can be retrieved (Algorithm 4).

Once the AbML is obtained for the drawing, using‘Get Structure’ will

re-render the schematic automatically. Both functions can be run in sequence us-

ing the‘Tidy’ button. In the case of the negative charge modification, the ‘_’

is replaced with a minus sign in the rendered image. For KIH modifications, the

characters ‘@’and ‘>’ are omitted, as these modifications are used to affect the

shape of the rendered domain. abYdraw can be used to export these schematics as

figures for publication and to generate a standardised expression that may be used

in MsAb annotations. The interface draws domains as blocks labelled with their

domain type and any specified modifications. A selection of structures included in

the library of the software is given in Figure 7.3.

7.3.3 Software Availability

Compiled apps for Linux, Mac OS and Windows are freely downloadable 1 while

an introduction to AbML and the latest AbML Format Description (i.e. any updates

1http://www.bioinf.org.uk/software/abydraw/

http://www.bioinf.org.uk/software/abydraw/
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Algorithm 4: abYdraw method of constructing AbML from drawn
MsAb domains.

while Domains Remain on Canvas do
• Loop through all domain objects and locate the object with the highest Y

coordinate. This will be the domain at the start of the first chain.

• Loop through bonds to find a connection between the current domain and
another (allowing some margin of error in the drawing). If a comment has
been added to a domain, add it to a domain object. Continue looping through
the chain until a domain is reached that does not have a connection. If no
connection is found, check if a hinge or engineered linker has a connection
to the current domain. If so, continue from there, otherwise, take this as the
end of the chain.

• As domains are found, remove these domains from the pool of domains on
the canvas.This will give plaintext representations of AbML strings, but
without numbering

end
while Domains remain unnumbered do

• Loop through string and assign numbering to each domain, hinge, and linker
then pair domains based on closeness:

– For each domain, loop through all other domains and identify if any
other compatible domains are within a given distance threshold to
consider them paired. If multiple domains are observed, the closest is
taken.

– Write pairing data for that domain to the domain object and the
interacting domain and number of disulphide bonds drawn between
domains, then remove both domains from the loop. If domains are VH
and VL , depending on the specificity given when drawing, that
information will also be saved. If no information was given, all antigen
binding sites are assumed to have the same specificity.

• Rewrite AbML expression with numbering, pairing, and modification
information and print domain to text box.

end
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Figure 7.3: Popular MsAb formats and their AbML expressions. Given formats are in-
cluded in the library of the abYdraw program and rendered through abYdraw.
Domains are color-coded to demonstrate different specificities where lighter
shades show light chains and darker shades show heavy chains. Peptide bonds
are shown in black, hinge regions in green, artificial linkers in purple and disul-
fide bonds in red.
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to Supplementary File 2) are available 2. The source code for abYdraw, released

under GPL3, is also available 3

7.3.4 Use Cases of AbML

In summer 2022, all mAbs and MsAb submissions to WHO-INN received AbML

annotations by generating a script that transformed the WHO-INN annotations into

AbML, which included 567 therapeutics, both mAb and MsAb, but also ADCs and

conditionally active therapeutics. It is also used for future WHO-INN submissions

as part of their detailed annotation format. This has led to some reworking of the

code to allow new formats of MsAbs antibodies to render. This has included: struc-

tures from IgM type; structures where a heavy chain may start with a H region;

allowing structures with two Hinge regions; X proteins on different chains form-

ing homodimers and allowing structures with X domains rather than Hinges. This

has led to the demonstration of how lively the MsAb field can be and the fact that

abYdraw is required to be flexible.

7.4 Discussion

By addressing the pitfalls of currently available annotation languages, we have

developed AbML which is loosely based on the established HELM notation for

macromolecule biologics but has been simplified and adapted specifically to de-

scribe antibody formats in a straightforward manner. AbML has been carefully

designed to allow annotation of future possible formats, and we have demonstrated

that it can be applied to all existing MsAbs described by Spiess et al. [79] as well
2http://www.bioinf.org.uk/abs/abml/
3https://github.com/JamesSweetJones/abYdraw

http://www.bioinf.org.uk/abs/abml/
https://github.com/JamesSweetJones/abYdraw
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as newer antibodies listed by the WHO-INN.

The simplicity of AbML over HELM allows greater accessibility as well as

allowing the potential to extend the language in the future by inserting additional

modification symbols and domain types that will futureproof the language to cope

with the inevitably expanding formats of recombinant and chemically conjugated

antibody-based drugs. In general, the ‘X’ and ‘C’ domains can be used to describe

a multitude of possible fusion proteins, drug conjugates and chemical bonds using

the comments system, and consequently we do not expect the language to require

constant updating.

Limitations of abYdraw are anticipated and may need to be addressed in the fu-

ture. It only supports eight specificities (i.e. letters a–h), but this should be enough

for all currently conceivable constructs. abYdraw also limits domain pairings to

those normally seen, however, there is nothing to prevent non-standard pairings

being present in the AbML language. In addition, interactions may be specified

between ‘extra’ (non-antibody) domains and chemical conjugation moieties. This

could be improved by allowing better rendering when linking two non-identical do-

mains e.g. X/L pairings which are possible to specify in AbML, however, this was

not considered when writing the software and so would require some rewriting of

the software to allow this. Although it supports ADC drug conjugation (random

or site-specific) in AbML, these are not currently rendered or supported in abY-

draw and we foresee the need to support associated features, including spacers and

specific payloads [206].

The work completed in this chapter was the first section of work to be com-
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pleted for the thesis while the author was learning the programming techniques and

machine learning skills required for the other chapters of the thesis. Had this pro-

gramme been written with more experience, it would be clear from the start that

object-orientated programming would be required to make the most efficient pro-

gramme, instead of using Python Dictionaries, as done here. Furthermore, it would

have been more suitable to have written abYdraw in JavaScript, which would allow

the graphical interface to be used via a web page without the need to install soft-

ware locally. This would be something to return to if the popularity of abYdraw

was maintained. Some initial attempts to do this together with a more dynamic

‘energy’-based layout algorithm have been made.

Since this work was published, the work by Biswas et al. [207] saw the in-

ception of VERITAS, another markup language that criticised AbML for appearing

overly complex and difficult to read when comparing different strings. Although it

could be agreed that it might be difficult to miss these details, that was the whole

point of abYdraw, so that these strings could be rendered and compared visually. By

comparison, VERITAS aims to condense these domains and chains into functional

units such as ScFvs, ScFabs and proteins. However, they decided to omit infor-

mation about binding specificity or allow added comments in the written language,

making it unsuitable for MsAbs and unsuitable for describing antibodies with mod-

ifications. Condensing the information to make it more readable has led to critical

information being lost, and the auuthor would still advocate for using AbML to

obtain full descriptions of MsAbs.
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7.5 Conclusions

To conclude, the annotation language AbML is a new descriptor language for MsAb

formats, and its ability to annotate all existing MsAb formats has been demon-

strated. We expect this language and its corresponding tool abYdraw to become

useful in the development of future MsAb drugs, allowing for standardisation of

MsAb description as part of ushering in a new era of MsAb drug development.

Improved descriptions of their formats and graphical interface for design is antici-

pated to allow accessibility for MsAb engineering for sequences discovered by the

pipeline in question in the thesis. It is planed to reimplement abYdraw in a more

flexible and dynamic manner to develop software to compare ASML strings since

the format allows the same structure to be described in different ways.



Chapter 8

Conclusions and Future Directions

The purpose of this thesis was to develop in silico methods to identify antibodies

with developability characteristics similar to those of clinical stage mAbs from se-

quence libraries. To do this, methods of encoding library sequences into numerical

data to be input into machine learning algorithms were devised in order to identify

library antibodies that cluster closely with clinical mAbs in a 2-dimensional projec-

tion of a high dimensional space, and for prediction of physicochemical properties

relevant to developability. Furthermore, work here has developed an end-to-end

pipeline with parameters capable of being toggled to suit researchers’ needs or cri-

teria, and a graphical user interface program for an annotation language developed

for describing MsAb formats. This chapter concludes the investigation that was

carried out in this thesis.

8.1 Construction of the Pipeline

Although it was originally set out only to predict these features on the basis of

sequence statistics, it became clear that this would be difficult to perform in a timely
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manner due to the time taken to calculate the amino acid encodings. It is understood

that LLMs would encode some structural information, which is likely necessary to

distinguish between clinical and repertoire, or approved and discontinued, and could

be encoded quickly using a graphics processing unit. The drawback of using these

LLMs is that it becomes difficult to identify what information is being highlighted

for this purpose. When this was investigated for models trained on approved and

discontinued mAbs, it was found that more features were used from the VL chain

than the VH chain, which was unexpected but could suggest more unknown functions

or features of the light chain in therapeutic mAbs relevant to their success at clinic

[208].

As stated above and concluded in Chapter 5, the clinical stage mAb dataset is

a selected and biased dataset, where each therapeutic would have had to be chosen

from a pool of possibilities for its binding efficacy, and developability and these

characteristics may have been optimised in vitro. At this stage, it is necessary to

overcome preclinical toxicology tests and must be produced on a moderate scale, so

it is not surprising that this dataset was seen to cluster closely in the KPCA. How-

ever, achieving a developability profile similar to current clinical mAbs does not

guarantee success and, for a variety of reasons, most therapeutics fail in clinical tri-

als. Although there were no statistical differences in the physicochemical properties

between discontinued and approved antibodies, it was found that machine learning

classifiers could be trained on amino acid compositions and LLM encodings, which

could distinguish them with a high degree of performance using feature selection.

Although this association could be due to chance because of the sheer number of
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data points used per sequence, it was seen that these trained models also showed

modest success with a set of held back data, indicating the relationship found was

real. This information, and the models from it, have potential to be used to predict

features early on which may go on to compromise a given antibody in clinical trials.

Despite this, it is nearly impossible to disentangle what these features would mean

and how they are influence developability.

8.2 Applications for the Pipeline in Therapeutic An-

tibody Discovery

The pipeline does not contain any information on binding to a given target, and

throughout the thesis it has remained agnostic to the target. This was intentional

to ensure that a given target would not influence the machine learning models and

thus could be used to search for any target. It would be expected that the library

entered into the pipeline would be a library generated as the result of immunisa-

tion campaigns in humanised mice toward a given target. Following immunisation

where the mouse generates a high proportion of antibodies toward the target, these

proteins can be sequenced to generate a library of about 10,000 paired nucleotide

sequences in the same way other libraries have been generated. However, not all

of these sequences will bind to the target and not all of these antibodies will bind

with high affinity, or to a useful epitope but the aim of the pipeline is to identify an-

tibodies in this sample with a developability profile similar to that of clinical stage

mAbs and those that have a high probability of passing clinical trials thus reduc-

ing the number that need to be analyzed experimentally. Once these antibodies are
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identified, the binding affinity can be tested using the phage display, with the ad-

vantage of knowing that any hits are predicted to be good quality antibodies before

optimisation.

The experimental validation did contradict the hypothesis that developable an-

tibodies would only be found close to the clinical mAbs in the KPCA. It was demon-

strated that for the properties tested (Tm, Tagg and HIC) that antibodies with good

properties were found throughout the KPCA, not just clustered at the origin with the

clinical mAb dataset and that the output antibody had a poorly validated HIC-RT.

It remains to be seen why this was the case, as germline biases were checked and

not observed. However, it was seen that the predictor trained on HIC-RT data could

have flagged this as showing poor developability, as the antibody selected from the

pipeline with the highest stringency also had the highest predicted and experimental

HIC retention time, so this could be used as a reliable additional triage at this stage.

Furthermore, what is reassuring is that this particular antibody was not output when

the probability threshold of the model predicting clinical trials outcome was set at

0.7, and so this has demonstrated that perhaps the threshold of this model should

be set at this stringency for future runs. Antibodies output by the pipeline above

these thresholds had lower predicted HIC retention time values and probably would

have performed better in experimental validation. Had more funding been available,

more antibodies output by the pipeline could have been tested to show its success,

but it was felt more important to use this opportunity to test multiple hypotheses

throughout the thesis.

Taken together, it is recommended that the pipeline should be used with strin-
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gent settings to ensure that all of the antibodies output are good quality antibodies

which would have a lower chance of failing during clinical trials.

8.3 Comparing the Pipeline to Other Available Soft-

ware

One advantage of the pipeline is that by using LLMs, antibodies can be encoded in

0.05 seconds using a graphics processing unit, which means that a library of 10,000

sequences can be encoded in around 8 minutes. The bottleneck of the pipeline is

the AbNum encoding and the KPCA. To make these more efficient, a version of

AbNum was installed locally on the server where the pipeline runs, rather than us-

ing the AbNum API. This reduced the times for encoding all of the sequences from

8 hours to 20 minutes. Despite this, no faster method to run the KPCA, using the

GPU was found. Despite this, this pipeline is still faster than running the TAP score

which, when using the IGX platform, took around 3 hours for each batch of 500

antibodies. Furthermore, it was found that TAP itself is not a predictor of clini-

cal success, since clincally approved mAbs were seen with score of as low as -20,

so it is only suitable to triage out very poorly developable antibodies with highly

negative scores. The developability prediction (TA-DA score) given by Negron et

al. [111], while demonstrating a combination of descriptors that can clearly sepa-

rate clinical mAbs from library antibodies (high TA-DA score near to 1, denotes

clinical antibodies) has not been made available for use despite its publication in

2022. Additionally, like the TAP score, this requires homology modelling the given

sequences, to calculate the descriptors, which is an intense process when a library
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of thousands of sequences are to be evaluated. Despite this, because their descrip-

tors have been assigned by themselves, it is easier to identify the properties that are

most important to identify clinical mAbs from a repertoire. However, the TA-DA

score did not correlate well with any of the individual physicochemical properties

measured by Jain et al. [102]. This is potentially because antibody developability

is not dependent on one property but on a set of properties that are in balance with

each other, where this relationship can be difficult to account for.

Furthermore, the AbPred development prediction software [107] requires more

time to encode the given antibody sequences, and it was shown in their paper that

their correlation is only moderate between their predictions and the experimental

data given in Jain et al. [102]. For this reason, it is difficult to use as a predictor of

developability and probably should be reserved for when a manageable number of

candidates remain before expensive in vitro studies commence.

The pipeline presented in this thesis tries to address the shortcomings of other

software by using an end-to-end triaging pipeline where an entire library can be in-

put. The architecture of the pipeline ensures that poor antibodies can be removed at

each stage, making each successive step in the pipeline more efficient. This is espe-

cially clear when using the sequence-derived physicochemical properties before the

bottlenecks of the pipeline which are numbering, encoding, and the KPCA steps. It

is expected that at each of these steps, some sequences will be lost as they cannot

be numbered or encoded, but this is not seen as an issue because if this is the case,

it seems reasonable to assume that they were likely to be very unusual antibodies

having poor predicted developability anyway.
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8.4 Future Work

8.4.1 The Role of Fc Domains in Developability

Throughout this thesis, the role of the constant regions of the antibodies has been

sidelined, despite their known role in downstream effector functions that can af-

fect immunogenicity and clearance, as well as thermostability and isoelectric point.

The simple reason for this is that Fc regions lack sequence diversity beyond im-

munoglobulin classes and subtypes [209], while Fv domains are involved in bind-

ing, which is the area of research with the highest focus. However, Fc domains

are often engineered to introduce silencing mutations, or to select a subtype with

desirable downstream-mediated effects (usually IgG1 or IgG4 [73, 210]). While

such differences could have effects, for the purposes of this study where the input

would usually be paired VH and VL sequences, it was considered irrelevant. Having

said this, it was interesting to see from Jain et al. [103] that antibodies with differ-

ent Fv sequences, but grafted onto the same Ig subtype demonstrated differences in

HIC-RT, which also lends to the idea of the ”developability web” where features

not immediately associated lead to changes in a given property.

8.4.2 The Role of Deep Learning

Something to be noted throughout this thesis is that it has avoided using neural

networks where possible. True, the LLMs are the result of deep learning training,

but in cases where simple machine learning models have been sufficient to train

classifiers, it seems overindulgent then to use deep learning models, which must be

constructed to a suitable architecture with appropriate optimisers and loss functions
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to do so. Using simple models, which perform well, is better than using complex

models which may overfit and be non-generalisable. This is not to say that deep

learning does not have its place in this field of research in terms of antibody mod-

elling and predicting antibody-antigen interactions, but these are potentially much

more difficult problems. Furthermore, antibody LLMs are known to overfit and

when predicting missing residues, will often revert back to residues found at that

position in germline sequences, or in cases with multiple missing residues predict

strings of the same residue [211]. Even in the cases where neural networks were

used, it was not any more successful than using simple machine learning classifiers,

which was shown when training ADA predictors in Chapter 4 and training classi-

fiers based on TAP scores in Chapter 6. Perhaps this would be an avenue for future

exploration, but as stated previously, it is difficult to compare the results between

studies that include different criteria to consider whether a patient has raised ADAs,

different populations, or whether the expression of ADAs is relevant to the clinical

treatment of interest, so efforts have been made to harmonise these findings to make

them more comparable [212].

8.4.3 The Need for More Complete Datasets

The obvious criticism of this work is that LLMs are highly biased towards their

training data sets (i.e. BCR repertoire data), and in the context of antibody LLMs,

certain germline gene pairings would be preferred over others, and this would pre-

vent the discovery of the therapeutic potential of novel pairings. However, if these

clinical mAbs from available online repositories are shown to work, it is not bad
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that similar antibodies have been selected as these are likely to be stable and less

immunogenic.

While these biases in the clinical dataset may be perpetuated by using this

pipeline, it is also important to appreciate that this bias exists only because it is

a selected dataset. Having that more sequence data from antibody libraries, more

data transparency on why some clinical mAbs have been discontinued, more exper-

imental data on non-clinical antibodies were made available so could allow biases

to be overcome. It is understood that pharmaceutical companies have been col-

lating decades of proprietary data, as well as generating new experimental data to

train their own predictive models [213], leaving academic research unable to access

these valuable data and relying on what has been published online. A more collabo-

rative environment where data can be pooled from different sources using federated

learning, (which has been shown to use sensitive patient data for machine learning

while maintaining anonymity [214]), could offer a faster solution to training the

generalisable models required.

8.5 Conclusions

To conclude, this thesis has explored methods of therapeutic antibody developabil-

ity prediction using antibody-trained LLMs to encode sequences and apply them to

machine learning tasks. Using this, it has been possible to train predictors that can

separate clinical mAbs, and library antibodies, as well as approved and discontin-

ued mAbs. It has been investigated how these encodings may be used to predict

experimental properties relevant to developability and to facilitate engineering of
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MsAbs. These components have been assembled into an end-to-end bioinformatics

pipeline which can be used to triage a library of antibody sequences to be left with a

selection that are predicted to have properties similar to those of clinical mAbs. This

pipeline hopes to accelerate the discovery of good quality candidates to decrease the

risk of failure in trials.
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Table A.1: Files accessed from Observed Antibody Space.

DS Name Sequences Organism Isotype Chain Disease Individual
King 2020 2 3358 human All Paired Tonsillitis/Obstructive-Sleep-Apnea Subject-BCP6
King 2020 2 1075 human All Paired Tonsillitis/Obstructive-Sleep-Apnea Subject-BCP8
King 2020 2 3390 human All Paired Tonsillitis Subject-BCP9
King 2020 2 1120 human All Paired Obstructive-Sleep-Apnea Subject-BCP3
King 2020 2 425 human All Paired Tonsillitis Subject-BCP4
King 2020 2 2935 human All Paired Tonsillitis Subject-BCP5
King 2020 2 2812 human All Paired Tonsillitis/Obstructive-Sleep-Apnea Subject-BCP6
King 2020 2 2888 human All Paired Tonsillitis/Obstructive-Sleep-Apnea Subject-BCP8
King 2020 2 2978 human All Paired Tonsillitis Subject-BCP9
Mor 2021 4393 human All Paired SARS-COV-2 Patient-10
Mor 2021 4025 human All Paired SARS-COV-2 Patient-9
Mor 2021 2946 human All Paired SARS-COV-2 Patient-8
Mor 2021 1584 human All Paired SARS-COV-2 Patient-7
Mor 2021 1605 human All Paired SARS-COV-2 Patient-6
Mor 2021 3574 human All Paired SARS-COV-2 Patient-5
Mor 2021 2032 human All Paired SARS-COV-2 Patient-4
Mor 2021 1812 human All Paired SARS-COV-2 Patient-3
Mor 2021 3105 human All Paired SARS-COV-2 Patient-16
Mor 2021 3849 human All Paired SARS-COV-2 Patient-15
Mor 2021 4232 human All Paired SARS-COV-2 Patient-14
Mor 2021 3482 human All Paired SARS-COV-2 Patient-13
Mor 2021 3314 human All Paired SARS-COV-2 Patient-12
Mor 2021 4162 human All Paired SARS-COV-2 Patient-2
Mor 2021 3340 human All Paired SARS-COV-2 Patient-1
Setliff 2019 4103 human All Paired HIV Donor-45
Setliff 2019 1444 human All Paired HIV Donor-N90
Woodruff 2020 1896 human All Paired SARS-COV-2 Patient-1
Woodruff 2020 1534 human All Paired SARS-COV-2 Patient-1
Eccles 2020 100 human All Paired None Healthy-1
Eccles 2020 47 human All Paired None Healthy-1
Eccles 2020 624 human All Paired None Healthy-1
King 2020 2 2207 human All Paired Obstructive-Sleep-Apnea Subject-BCP3
King 2020 2 2090 human All Paired Tonsillitis Subject-BCP4
King 2020 2 5793 human All Paired Tonsillitis Subject-BCP5



Appendix B

Data Files

Presented here are large data files which were used in the project presented in

FASTA format

> [identi f ier] V H|[identi f ier]

[HeavyChain]

> [identi f ier] V L|[identi f ier]

[LightChain]

As an example

>Adalimumab_VH|Adalimumab

EVQLVESGGGLVQPGRSLRLSCAASGFTFDDYAMHWVRQAPGKGLEWVSAITWN

SGHIDYADSVEGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCAKVSYLSTASSL

DYWGQGTLVTVSS

>Adalimumab_VL|Adalimumab

DIQMTQSPSSLSASVGDRVTITCRASQGIRNYLAWYQQKPGKAPKLLIYAASTL

QSGVPSRFSGSGSGTDFTLTISSLQPEDVATYYCQRYNRAPYTFGQGTKVEIK

>Adalimumab_VH|Adalimumab
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDYAMHWVRQAPGKGLEWVSAITWNSGHIDYADSVEGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCAKVSYLSTASSLDYWGQGTLVTVSS
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDYAMHWVRQAPGKGLEWVSAITWNSGHIDYADSVEGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCAKVSYLSTASSLDYWGQGTLVTVSS
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDYAMHWVRQAPGKGLEWVSAITWNSGHIDYADSVEGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCAKVSYLSTASSLDYWGQGTLVTVSS
>Adalimumab_VL|Adalimumab
DIQMTQSPSSLSASVGDRVTITCRASQGIRNYLAWYQQKPGKAPKLLIYAASTLQSGVPSRFSGSGSGTDFTLTISSLQPEDVATYYCQRYNRAPYTFGQGTKVEIK
DIQMTQSPSSLSASVGDRVTITCRASQGIRNYLAWYQQKPGKAPKLLIYAASTLQSGVPSRFSGSGSGTDFTLTISSLQPEDVATYYCQRYNRAPYTFGQGTKVEIK
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B.1 Data File URLs

Data File 1: OAS Dataset

https://mega.nz/file/lsxCFJba#LTOngpbRGzZNzV-3bUThkmRM

mZTi2HmFWjTmQkMm8GU

Data File 2: Approved Human mAbs from the TheraSabSab as of October

2021

https://mega.nz/file/0toQBKiK#NfcKFmESFADK_rKrlkSHeN0c

lXGY_sZhgH_x_2z1I8Q

Data File 3: Discontinued Human mAbs from the TheraSabSab as of October

2021

https://mega.nz/file/woYXjZLR#0bEQnawF2-__3XFezUWuAL-0

_D11UEBE1y1odQDQK1k

Data File 4: Clinical Trial Human mAbs from the TheraSabSab as of October

2021

https://mega.nz/file/1xZinaAY#OTkLFsg_MPnH5DEKxbgv9aFv

GqUQju46_8zDnEwGDuQ

Data File 5: Human-Derived mAbs named after 2022

https://mega.nz/file/F9YzyRTI#-Mzcm2KdDl6rdLbi3vjwa4Zd

1DNn08PZgBl_e3ATQMU

Data File 6: Accession Numbers for Unpaired VH chains

https://mega.nz/file/YhwWSAjT#M8AkWSNHCkzP02vRHUUWYXCL

https://mega.nz/file/lsxCFJba#LTOngpbRGzZNzV-3bUThkmRMmZTi2HmFWjTmQkMm8GU
https://mega.nz/file/lsxCFJba#LTOngpbRGzZNzV-3bUThkmRMmZTi2HmFWjTmQkMm8GU
https://mega.nz/file/0toQBKiK#NfcKFmESFADK_rKrlkSHeN0clXGY_sZhgH_x_2z1I8Q
https://mega.nz/file/0toQBKiK#NfcKFmESFADK_rKrlkSHeN0clXGY_sZhgH_x_2z1I8Q
https://mega.nz/file/woYXjZLR#0bEQnawF2-__3XFezUWuAL-0_D11UEBE1y1odQDQK1k
https://mega.nz/file/woYXjZLR#0bEQnawF2-__3XFezUWuAL-0_D11UEBE1y1odQDQK1k
https://mega.nz/file/1xZinaAY#OTkLFsg_MPnH5DEKxbgv9aFvGqUQju46_8zDnEwGDuQ
https://mega.nz/file/1xZinaAY#OTkLFsg_MPnH5DEKxbgv9aFvGqUQju46_8zDnEwGDuQ
https://mega.nz/file/F9YzyRTI#-Mzcm2KdDl6rdLbi3vjwa4Zd1DNn08PZgBl_e3ATQMU
https://mega.nz/file/F9YzyRTI#-Mzcm2KdDl6rdLbi3vjwa4Zd1DNn08PZgBl_e3ATQMU
https://mega.nz/file/YhwWSAjT#M8AkWSNHCkzP02vRHUUWYXCL47mqh_4-yXYidGDFhkc
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47mqh_4-yXYidGDFhkc

Data File 7: Accession Numbers for Unpaired VL chains

https://mega.nz/file/1lhVGAiJ#9dHQDLZG0mPLP2KAlQY2_R-P

5mEwHwQLhSUdQ2SNHt4

Data File 8: Approved Therapeutics mAb from the TheraSabDab as of Octo-

ber 2021

https://mega.nz/file/p8QyVD6b#g22YuonW5FoHyxi2Yui8kgwt

SPdjxjIFNvG9CHqU220

Data File 9: Discontinued mAb Therapeutics from the TheraSabDab as of

October 2021

https://mega.nz/file/00Y1yBSJ#ojgDNWTgTgk0oSuZ_OMoOns_

KDbwKaACXKcY6IMTeQ8

Data File 10: Approved mAb Therapeutics from the TheraSabDab from Octo-

ber 2021

https://mega.nz/file/JoxEBapD#GhauimPl53qQfzOlT4NYhiQJ

IMMd5italzxtO7-zoLE

Data File 11: Discontinued mAb Therapeutics from the TheraSabDab from

October 2021

https://mega.nz/file/Ahx0zB7a#1gHpR8sljdJkSL3rqtASTXob

A0oWJUpZta4QrwW_ZfA

Data File 12: Pure2 Dataset (NT)

https://mega.nz/file/BopQgJKR#X4Nl-1GX84-hjmjiL0UdWCZi

hKIS63vt2nsaR6B20tQ

https://mega.nz/file/YhwWSAjT#M8AkWSNHCkzP02vRHUUWYXCL47mqh_4-yXYidGDFhkc
https://mega.nz/file/YhwWSAjT#M8AkWSNHCkzP02vRHUUWYXCL47mqh_4-yXYidGDFhkc
https://mega.nz/file/1lhVGAiJ#9dHQDLZG0mPLP2KAlQY2_R-P5mEwHwQLhSUdQ2SNHt4
https://mega.nz/file/1lhVGAiJ#9dHQDLZG0mPLP2KAlQY2_R-P5mEwHwQLhSUdQ2SNHt4
https://mega.nz/file/p8QyVD6b#g22YuonW5FoHyxi2Yui8kgwtSPdjxjIFNvG9CHqU220
https://mega.nz/file/p8QyVD6b#g22YuonW5FoHyxi2Yui8kgwtSPdjxjIFNvG9CHqU220
https://mega.nz/file/00Y1yBSJ#ojgDNWTgTgk0oSuZ_OMoOns_KDbwKaACXKcY6IMTeQ8
https://mega.nz/file/00Y1yBSJ#ojgDNWTgTgk0oSuZ_OMoOns_KDbwKaACXKcY6IMTeQ8
https://mega.nz/file/JoxEBapD#GhauimPl53qQfzOlT4NYhiQJIMMd5italzxtO7-zoLE
https://mega.nz/file/JoxEBapD#GhauimPl53qQfzOlT4NYhiQJIMMd5italzxtO7-zoLE
https://mega.nz/file/Ahx0zB7a#1gHpR8sljdJkSL3rqtASTXobA0oWJUpZta4QrwW_ZfA
https://mega.nz/file/Ahx0zB7a#1gHpR8sljdJkSL3rqtASTXobA0oWJUpZta4QrwW_ZfA
https://mega.nz/file/BopQgJKR#X4Nl-1GX84-hjmjiL0UdWCZihKIS63vt2nsaR6B20tQ
https://mega.nz/file/BopQgJKR#X4Nl-1GX84-hjmjiL0UdWCZihKIS63vt2nsaR6B20tQ
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Data File 13: Pure2 Dataset (AA)

https://mega.nz/file/l9IzmYpa#5sUkVpoKepdd_oNV3rn9GgzL

Z-QpEPSTleF0LBNXpMU

https://mega.nz/file/l9IzmYpa#5sUkVpoKepdd_oNV3rn9GgzLZ-QpEPSTleF0LBNXpMU
https://mega.nz/file/l9IzmYpa#5sUkVpoKepdd_oNV3rn9GgzLZ-QpEPSTleF0LBNXpMU


Appendix C

Experimental Procedures

Experimental procedures were carried out by GenScript as no in-house lab facilities

were available at the time required. Details of protocols were kept confidential and

so described here is an overview of the assays from details provided by GenScript.

C.1 Expression

Original amino acid sequences from Pure2 were provided to GenScript which were

then conjugated to a Human IgG1 backbone (Table C.1) and expressed with a pro-

prietary Chinese Hamster Ovary cell line (TurboCHO-HT 2.0) to a volume of 30ml.

Proteins were purified using Protein A for antibody targets and quantified using

SDS-PAGE electrophoresis.

C.2 Melting Temperature (Tm) Assay

Melting temperature was tested from for each antibody using differential scanning

fluorometry by increasing the temperature of the sample 1°C/min from start tem-

perature 20°C to end temperature 90°C. A fluorescent dye is added to the solution
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Table C.1: Antibody heavy and light chain expression sequences as expressed by Gen-
Script.

Label Identifier Heacy Chain Expression Sequence Light Chain Expression Sequence
A ACGAGGATCGCATGAT MGWSCIILFLVATATGVHSEVQLVQSGGGLVQPGGSLKLSCVASGFTVSASAMHWVRQAPGKGLE MGWSCIILFLVATATGVHSDIQMTQSPSSLSASVGDRVTITCRAGEQISTYLNWYQQKPGKAPKLLI

WIGRIRKKVDDNVTQYAASVRGRFAISRDDSKNMAHLQMDSLKTEDTAVYFCARRVGGYYGLDV YVASTLQSGVPSRFSGSASGTHFTLSISNLQPDDSATYYCQQTYQTPYTFGQGTSLEIRRTVAAPSV
WGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGKSCDKTHTCPPCTAALGCLVKDYFPEPVTVSWNS FIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTL
GALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPPAPELLGGPSV SKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC*
FLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSV
LTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKG
FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHY
TQKSLSLSPGK*

B ACGAGCCCAAGCGCTC MGWSCIILFLVATATGVHSQVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGQGL MGWSCIILFLVATATGVHSDIVLTQSPDSLAVSLGERATINCKSSQSVLFRSNNKDYLAWYQQKPGQ
EWMGIINPSSGTTTYAQKFQGRVTMTRDTSTSTLYMEVSSLRSEDTAIYYCVRERGGSHNAFDIWG PPKLLIYWASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQYYSGPLYTFGQGTKLEIKRT
QGTRVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQ VAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSL
SSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFL SSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC*
FPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLT
VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFY
PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQ
KSLSLSPGK*

C CCTACCAGTATGAAAC MGWSCIILFLVATATGVHSQITLKESGPTLVKPTQTLTLTCTFSGFSLTTNGVGVGWIRQPPGKALEW MGWSCIILFLVATATGVHSDIQMTQSPSTLSASVGDRVIITCRASQTINRWLAWYQQKPGKAPKLLIFK
LALIYWNDDKRYSPSLNKRFTITKDTSKNQVVLTMTNMDPVDTATYYCAREVVTATTSFDYWGQ ASSLEDGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNSYWTFGQGTKVEIKRTVAAPSVFIFPPS
GIMVTVASASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQ DEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEK
SSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFL HKVYACEVTHQGLSSPVTKSFNRGEC*
FPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVL
TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKG
FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNH
YTQKSLSLSPGK*

D CTAGTGAGTAGAGTGC MGWSCIILFLVATATGVHSEVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWIGWVRQMPGKGLE MGWSCIILFLVATATGVHSQSVLTQPPSASGTPGQRVTISCSGSSSNIGSNYVYWYQQLPGTAPKLLIYRN
WMGIIYPGDSDTRYSPSFQGQVTISADKSISTAYLQWSSLKASDTAMYYCARHRMEVRGVDKRR NQRPSGVPDRFSGSKSGTSASLAISGLRSEDEADYYCAAWDDSLSGVVFGGGTKLTVLGQPKAAPSVT
DYSQQYYYYGMDVWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVS LFPPSSEELQANKATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWK
WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDK SHRSYSCQVTHEGSTVEKTVAPTECS*
THTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHN
AKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYT
LPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSR
WQQGNVFSCSVMHEALHNHYTQKSLSLSPGK*

E TGCGCAGGTTTGTTTC MGWSCIILFLVATATGVHSQVQLVQSGAEVKKPGSSVKVSCKASGGTFSTYAFYWVRQAPGQGL MGWSCIILFLVATATGVHSQSALTQPRSVSGSPGQSVTISCTGTSSDVGSYNYVSWYQQHPGKAPKLMIYD
EWMGRIIPLLGMTIYAQNFQGRVTMTADKSTSTAYMELSSLRSGDTAVYYCARVDDYGDLRFDD VNKRPSGVPARFSGSKSGNTASLTISGLQSEDEADYYCCSYVGSHTFLFGAGTKVTVLGQPKAAPSVTLFP
WGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFP PSSEELQANKATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHR
AVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGG SYSCQVTHEGSTVEKTVAPTECS*
PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYR
VVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLT
CLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHE
ALHNHYTQKSLSLSPGK*

containing the protein of interest. As the protein unfolds from the increase in tem-

perature, the dye associates with the hydrophobic regions of the protein which are

now free to interact. This interaction causes a conformational change in the dye that

causes an enhancement in fluorescence. The assay was carried out using a Wyatt

DynaPro Plate Reader III which can detect the fluorescence as it increases.

C.3 HIC-HPLC Assay

The principles of Hydrophobic Interaction Chromatography-High Performance

Liquid Chromatography (HIC-HPLC) is to separate a sample based on their hy-

drophobicity, which leads to a longer elution time if a given molecule is more hy-

drophobic. This assay is usually performed in a column with a hydrophobic station-

ary phase and a concentrated salt mobile phase which binds to the water molecules

at equilibrium with the stationary phase. The sample is added to the system which

binds to the stationary phase. As the salt concentration in the mobile phase is de-

creased over time, the sample is eluted as the water molecules become more free to
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interact. Molecules in the sample are detected as they are eluted and the time taken

for elution is recorded. Results of HIC-HPLC assays can differ in experimental

setups depending on the kind of salts used and its concentration as well as the tem-

perature and pH. Details of this and apparatus for detection were kept confidential.

C.4 Aggregation Temperature (Tagg) Assay

Melting temperature was tested from for each antibody using dynamic light scat-

tering (DLS) by increasing the temperature of the sample 1°C /min from start tem-

perature 25°C to end temperature 85°C. DLS measures the size of the particles in

the sample, which increase with temperature as proteins unfold and aggregate in

solution. Proteins with higher Tagg are considered less likely to aggregate because

higher temperature is required for them to do so. The assay was carried out using a

Wyatt DynaPro Plate Reader III.
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nia Mayra Pérez-Tapia. Phage Display Libraries for Antibody Therapeutic

Discovery and Development. Antibodies, 8(3):44, 2019.

[27] Yang Zhang. Evolution of phage display libraries for therapeutic antibody

discovery. mAbs, 15(1):2213793, 2023.

[28] Saravanan Rajan, Michael R. Kierny, Andrew Mercer, Jincheng Wu, An-

drey Tovchigrechko, Herren Wu, William F. DallAcqua, Xiaodong Xiao,

and Partha S. Chowdhury. Recombinant Human B Cell Repertoires Enable

Screening for Rare, Specific, and Natively Paired Antibodies. Communica-

tions Biology, 1(1):5, 2018.

[29] Matthew C. Woodruff, Richard P. Ramonell, Doan C. Nguyen, Kevin S.

Cashman, Ankur Singh Saini, Natalie S. Haddad, Ariel M. Ley, Shuya

Kyu, J. Christina Howell, Tugba Ozturk, Saeyun Lee, Naveenchandra

Suryadevara, James Brett Case, Regina Bugrovsky, Weirong Chen, Ja-



BIBLIOGRAPHY 237

cob Estrada, Andrea Morrison-Porter, Andrew Derrico, Fabliha A. Anam,

Monika Sharma, Henry M. Wu, Sang N. Le, Scott A. Jenks, Christopher M.

Tipton, Bashar Staitieh, John L. Daiss, Eliver Ghosn, Michael S. Diamond,

Robert H. Carnahan, James E. Crowe, William T. Hu, F. Eun-Hyung Lee, and

Ignacio Sanz. Extrafollicular B Cell Responses Correlate With Neutralizing

Antibodies and Morbidity in COVID-19. Nature Immunology, 21(12):1506–

1516, 2020.

[30] Ian Setliff, Andrea R. Shiakolas, Kelsey A. Pilewski, Amyn A. Murji, Ru-

tendo E. Mapengo, Katarzyna Janowska, Simone Richardson, Charissa Oost-

huysen, Nagarajan Raju, Larance Ronsard, Masaru Kanekiyo, Juliana S. Qin,

Kevin J. Kramer, Allison R. Greenplate, Wyatt J. McDonnell, Barney S. Gra-

ham, Mark Connors, Daniel Lingwood, Priyamvada Acharya, Lynn Morris,

and Ivelin S. Georgiev. High-Throughput Mapping of B Cell Receptor Se-

quences to Antigen Specificity. Cell, 179(7):1636–1646.e15, 2019.

[31] Jacob D. Eccles, Ronald B. Turner, Nicole A. Kirk, Lyndsey M. Muehling,

Larry Borish, John W. Steinke, Spencer C. Payne, Paul W. Wright, Deborah

Thacker, Sampo J. Lahtinen, Markus J. Lehtinen, Peter W. Heymann, and

Judith A. Woodfolk. T-Bet+ Memory B Cells Link to Local Cross-Reactive

IgG Upon Human Rhinovirus Infection. Cell Reports, 30(2):351–366.e7,

2020.

[32] David B. Jaffe, Payam Shahi, Bruce A. Adams, Ashley M. Chrisman, Pe-

ter M. Finnegan, Nandhini Raman, Ariel E. Royall, FuNien Tsai, Thomas



BIBLIOGRAPHY 238

Vollbrecht, Daniel S. Reyes, N. Lance Hepler, and Wyatt J. McDon-

nell. Functional Antibodies Exhibit Light Chain Coherence. Nature,

611(7935):352–357, 2022.

[33] Tobias H. Olsen, Fergus Boyles, and Charlotte M. Deane. Observed An-

tibody Space: a Diverse Database of Cleaned, Annotated, and Translated

Unpaired and Paired Antibody Sequences. Protein Science, 31(1):141–146,

2022.

[34] Leonard D. Goldstein, Ying-Jiun J. Chen, Jia Wu, Subhra Chaudhuri, Yi-

Chun Hsiao, Kellen Schneider, Kam Hon Hoi, Zhonghua Lin, Steve Guer-

rero, Bijay S. Jaiswal, Jeremy Stinson, Aju Antony, Kanika Bajaj Pahuja,

Dhaya Seshasayee, Zora Modrusan, Isidro Hötzel, and Somasekar Seshagiri.
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[56] Marianne Brüggemann, Michael J. Osborn, Biao Ma, Jasvinder Hayre,

Suzanne Avis, Brian Lundstrom, and Roland Buelow. Human Antibody

Production in Transgenic Animals. Archivum Immunologiae et Therapiae

Experimentalis, 63(2):101–108, 2015.

[57] Michael A. Morse. Technology Evaluation: Ipilimumab, Medarex/Bristol-

Myers Squibb. Current Opinion in Molecular Therapeutics, 7(6):588–597,

2005.

[58] Kim A. Papp, Craig Leonardi, Alan Menter, Jean-Paul Ortonne, James G.

Krueger, Gregory Kricorian, Girish Aras, Juan Li, Chris B. Russell, Elizabeth

H. Z Thompson, and Scott Baumgartner. Brodalumab, an Anti–Interleukin-



BIBLIOGRAPHY 243

17–Receptor Antibody for Psoriasis. New England Journal of Medicine,

366(13):1181–1189, 2012.

[59] Michael R. Migden, Danny Rischin, Chrysalyne D. Schmults, Alexander

Guminski, Axel Hauschild, Karl D. Lewis, Christine H. Chung, Leonel

Hernandez-Aya, Annette M. Lim, Anne Lynn S. Chang, Guilherme Rabi-

nowits, Alesha A. Thai, Lara A. Dunn, Brett G. M Hughes, Nikhil I. Khusha-

lani, Badri Modi, Dirk Schadendorf, Bo Gao, Frank Seebach, Siyu Li, Jingjin

Li, Melissa Mathias, Jocelyn Booth, Kosalai Mohan, Elizabeth Stankevich,

Hani M. Babiker, Irene Brana, Marta Gil-Martin, Jade Homsi, Melissa L.

Johnson, Victor Moreno, Jiaxin Niu, Taofeek K. Owonikoko, Kyriakos P.

Papadopoulos, George D. Yancopoulos, Israel Lowy, and Matthew G. Fury.

PD-1 Blockade With Cemiplimab in Advanced Cutaneous Squamous-Cell

Carcinoma. New England Journal of Medicine, 379(4):341–351, 2018.

[60] Susan J. Keam. Tixagevimab + Cilgavimab: First Approval. Drugs,

82(9):1001–1010, 2022.

[61] Nigel M. Low, Philipp Holliger, and Greg Winter. Mimicking Somatic Hy-

permutation: Affinity Maturation of Antibodies Displayed on Bacteriophage

Using a Bacterial Mutator Strain. Journal of Molecular Biology, 260(3):359–

368, 1996.

[62] James D. Marks. Antibody Affinity Maturation by Chain Shuffling. Methods

in Molecular Biology, pages 327–343, 2004.



BIBLIOGRAPHY 244

[63] Mitchell Ho, Robert J. Kreitman, Masanori Onda, and Ira Pastan. in vitro

Antibody Evolution Targeting Germline Hot Spots to Increase Activity of an

Anti-Cd22 Immunotoxin. Journal of Biological Chemistry, 280(1):607–617,

2005.

[64] Ruei-Min Lu, Yu-Chyi Hwang, I-Ju Liu, Chi-Chiu Lee, Han-Zen Tsai, Hsin-

Jung Li, and Han-Chung Wu. Development of Therapeutic Antibodies for

the Treatment of Diseases. Journal of Biomedical Science, 27(1):1, 2020.

[65] Hélène Kaplon and Janice M. Reichert. Antibodies to Watch in 2021. mAbs,

13(1):1860476, 2021.

[66] Hélène Kaplon, Alicia Chenoweth, Silvia Crescioli, and Janice M. Reichert.

Antibodies to Watch in 2022. mAbs, 14(1):2014296, 2022.

[67] Sofia S. Guimaraes Koch, Robin Thorpe, Nana Kawasaki, Marie-Paule

Lefranc, Sarel Malan, Andrew C. R. Martin, Gilles Mignot, Andreas

Plückthun, Menico Rizzi, Stephanie Shubat, Karin Weisser, and Raffaella

Balocco. International Nonproprietary Names for Monoclonal Antibodies:

An Evolving Nomenclature System. mAbs, 14(1):2075078, 2022.

[68] Silvia Crescioli, Hélène Kaplon, Alicia Chenoweth, Lin Wang, Jyothsna

Visweswaraiah, and Janice M. Reichert. Antibodies to Watch in 2024. mAbs,

16(1):2297450, 2024.

[69] Aran F. Labrijn, Maarten L. Janmaat, Janice M. Reichert, and Paul W. H I.



BIBLIOGRAPHY 245

Parren. Bispecific Antibodies: a Mechanistic Review of the Pipeline. Nature

Reviews Drug Discovery, 18(8):585–608, 2019.

[70] Christophe Schmitt, Joanne I. Adamkewicz, Jin Xu, Claire Petry, Olivier

Catalani, Guy Young, Claude Negrier, Michael U. Callaghan, and Gallia G.

Levy. Pharmacokinetics and Pharmacodynamics of Emicizumab in Persons

With Hemophilia a With Factor VIII Inhibitors: HAVEN 1 Study. Thrombo-

sis and Haemostasis, 121(3):351–360, 2021.

[71] Yu Zhou, Lequn Zhao, and James D. Marks. Selection and Characterization

of Cell Binding and Internalizing Phage Antibodies. Archives of Biochem-

istry and Biophysics, 526(2):107–113, 2012.

[72] Eunhee G. Kim, Jieun Jeong, Junghyeon Lee, Hyeryeon Jung, Minho

Kim, Yi Zhao, Eugene C. Yi, and Kristine M. Kim. Rapid Evaluation of

Antibody Fragment Endocytosis for Antibody Fragment–Drug Conjugates.

Biomolecules, 10(6):955, 2020.

[73] Ian Wilkinson, Stephen Anderson, Jeremy Fry, Louis Alex Julien, David

Neville, Omar Qureshi, Gary Watts, and Geoff Hale. Fc-Engineered Anti-

bodies With Immune Effector Functions Completely Abolished. PLOS ONE,

16(12):e0260954, 2021.

[74] Alastair Douglas Davy Koen Sandra Geoff Hale, Jelle De Vos and Ian

Wilkinson. Systematic analysis of fc mutations designed to reduce binding

to fc-gamma receptors. mAbs, 16(1):2402701, 2024.



BIBLIOGRAPHY 246

[75] Richard W. Shuai, Jeffrey A. Ruffolo, and Jeffrey J. Gray. IgLM: Infilling

language modeling for antibody sequence design. Cell Systems, 14(11):979–

989, 2023.

[76] Ulrich Brinkmann and Roland E. Kontermann. The Making of Bispecific

Antibodies. mAbs, 9(2):182–212, 2017.

[77] César. Milstein and A. Claudio Cuello. Hybrid Hybridomas and Their Use

in Immunohistochemistry. Nature, 305(5934):537–540, 1983.

[78] Roland E. Kontermann and Ulrich Brinkmann. Bispecific Antibodies. Drug

Discovery Today, 20(7):838–847, 2015.

[79] Christoph Spiess, Qianting Zhai, and Paul J. Carter. Alternative Molecular

Formats and Therapeutic Applications for Bispecific Antibodies. Molecular

Immunology, 67(2, Part A):95–106, 2015.

[80] Fabrice Le Gall, Sergey M. Kipriyanov, Gerhard Moldenhauer, and Melvyn

Little. Di-, Tri- and Tetrameric Single Chain Fv Antibody Fragments Against

Human CD19: Effect of Valency on Cell Binding. Federation of European

Biochemical Societies Letters, 453(1-2):164–168, 1999.
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